File size: 9,875 Bytes
f18e71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for nlp.data.pretrain_dynamic_dataloader."""
import os

from absl import logging
from absl.testing import parameterized
import numpy as np
import orbit
import tensorflow as tf, tf_keras

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.data import pretrain_dataloader
from official.nlp.data import pretrain_dynamic_dataloader
from official.nlp.tasks import masked_lm


def _create_fake_dataset(output_path, seq_length, num_masked_tokens,

                         max_seq_length, num_examples):
  """Creates a fake dataset."""
  writer = tf.io.TFRecordWriter(output_path)

  def create_int_feature(values):
    f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
    return f

  def create_float_feature(values):
    f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
    return f

  rng = np.random.default_rng(37)
  for _ in range(num_examples):
    features = {}
    padding = np.zeros(shape=(max_seq_length - seq_length), dtype=np.int32)
    input_ids = rng.integers(low=1, high=100, size=(seq_length))
    features['input_ids'] = create_int_feature(
        np.concatenate((input_ids, padding)))
    features['input_mask'] = create_int_feature(
        np.concatenate((np.ones_like(input_ids), padding)))
    features['segment_ids'] = create_int_feature(
        np.concatenate((np.ones_like(input_ids), padding)))
    features['position_ids'] = create_int_feature(
        np.concatenate((np.ones_like(input_ids), padding)))
    features['masked_lm_positions'] = create_int_feature(
        rng.integers(60, size=(num_masked_tokens), dtype=np.int64))
    features['masked_lm_ids'] = create_int_feature(
        rng.integers(100, size=(num_masked_tokens), dtype=np.int64))
    features['masked_lm_weights'] = create_float_feature(
        np.ones((num_masked_tokens,), dtype=np.float32))
    features['next_sentence_labels'] = create_int_feature(np.array([0]))

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


class PretrainDynamicDataLoaderTest(tf.test.TestCase, parameterized.TestCase):

  @combinations.generate(

      combinations.combine(

          distribution_strategy=[

              strategy_combinations.cloud_tpu_strategy,

          ],

          mode='eager'))
  def test_distribution_strategy(self, distribution_strategy):
    max_seq_length = 128
    batch_size = 8
    input_path = os.path.join(self.get_temp_dir(), 'train.tf_record')
    _create_fake_dataset(
        input_path,
        seq_length=60,
        num_masked_tokens=20,
        max_seq_length=max_seq_length,
        num_examples=batch_size)
    data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
        is_training=False,
        input_path=input_path,
        seq_bucket_lengths=[64, 128],
        global_batch_size=batch_size)
    dataloader = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
        data_config)
    distributed_ds = orbit.utils.make_distributed_dataset(
        distribution_strategy, dataloader.load)
    train_iter = iter(distributed_ds)
    with distribution_strategy.scope():
      config = masked_lm.MaskedLMConfig(
          init_checkpoint=self.get_temp_dir(),
          model=bert.PretrainerConfig(
              encoders.EncoderConfig(
                  bert=encoders.BertEncoderConfig(
                      vocab_size=30522, num_layers=1)),
              cls_heads=[
                  bert.ClsHeadConfig(
                      inner_dim=10, num_classes=2, name='next_sentence')
              ]),
          train_data=data_config)
      task = masked_lm.MaskedLMTask(config)
      model = task.build_model()
      metrics = task.build_metrics()

    @tf.function
    def step_fn(features):
      return task.validation_step(features, model, metrics=metrics)

    distributed_outputs = distribution_strategy.run(
        step_fn, args=(next(train_iter),))
    local_results = tf.nest.map_structure(
        distribution_strategy.experimental_local_results, distributed_outputs)
    logging.info('Dynamic padding:  local_results= %s', str(local_results))
    dynamic_metrics = {}
    for metric in metrics:
      dynamic_metrics[metric.name] = metric.result()

    data_config = pretrain_dataloader.BertPretrainDataConfig(
        is_training=False,
        input_path=input_path,
        seq_length=max_seq_length,
        max_predictions_per_seq=20,
        global_batch_size=batch_size)
    dataloader = pretrain_dataloader.BertPretrainDataLoader(data_config)
    distributed_ds = orbit.utils.make_distributed_dataset(
        distribution_strategy, dataloader.load)
    train_iter = iter(distributed_ds)
    with distribution_strategy.scope():
      metrics = task.build_metrics()

    @tf.function
    def step_fn_b(features):
      return task.validation_step(features, model, metrics=metrics)

    distributed_outputs = distribution_strategy.run(
        step_fn_b, args=(next(train_iter),))
    local_results = tf.nest.map_structure(
        distribution_strategy.experimental_local_results, distributed_outputs)
    logging.info('Static padding:  local_results= %s', str(local_results))
    static_metrics = {}
    for metric in metrics:
      static_metrics[metric.name] = metric.result()
    for key in static_metrics:
      # We need to investigate the differences on losses.
      if key != 'next_sentence_loss':
        self.assertEqual(dynamic_metrics[key], static_metrics[key])

  def test_load_dataset(self):
    tf.random.set_seed(0)
    max_seq_length = 128
    batch_size = 2
    input_path_1 = os.path.join(self.get_temp_dir(), 'train_1.tf_record')
    _create_fake_dataset(
        input_path_1,
        seq_length=60,
        num_masked_tokens=20,
        max_seq_length=max_seq_length,
        num_examples=batch_size)
    input_path_2 = os.path.join(self.get_temp_dir(), 'train_2.tf_record')
    _create_fake_dataset(
        input_path_2,
        seq_length=100,
        num_masked_tokens=70,
        max_seq_length=max_seq_length,
        num_examples=batch_size)
    input_paths = ','.join([input_path_1, input_path_2])
    data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
        is_training=False,
        input_path=input_paths,
        seq_bucket_lengths=[64, 128],
        use_position_id=True,
        global_batch_size=batch_size,
        deterministic=True)
    dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
        data_config).load()
    dataset_it = iter(dataset)
    features = next(dataset_it)
    self.assertCountEqual([
        'input_word_ids',
        'input_mask',
        'input_type_ids',
        'next_sentence_labels',
        'masked_lm_positions',
        'masked_lm_ids',
        'masked_lm_weights',
        'position_ids',
    ], features.keys())
    # Sequence length dimension should be bucketized and pad to 64.
    self.assertEqual(features['input_word_ids'].shape, (batch_size, 64))
    self.assertEqual(features['input_mask'].shape, (batch_size, 64))
    self.assertEqual(features['input_type_ids'].shape, (batch_size, 64))
    self.assertEqual(features['position_ids'].shape, (batch_size, 64))
    self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 20))
    features = next(dataset_it)
    self.assertEqual(features['input_word_ids'].shape, (batch_size, 128))
    self.assertEqual(features['input_mask'].shape, (batch_size, 128))
    self.assertEqual(features['input_type_ids'].shape, (batch_size, 128))
    self.assertEqual(features['position_ids'].shape, (batch_size, 128))
    self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 70))

  def test_load_dataset_not_same_masks(self):
    max_seq_length = 128
    batch_size = 2
    input_path_1 = os.path.join(self.get_temp_dir(), 'train_3.tf_record')
    _create_fake_dataset(
        input_path_1,
        seq_length=60,
        num_masked_tokens=20,
        max_seq_length=max_seq_length,
        num_examples=batch_size)
    input_path_2 = os.path.join(self.get_temp_dir(), 'train_4.tf_record')
    _create_fake_dataset(
        input_path_2,
        seq_length=60,
        num_masked_tokens=15,
        max_seq_length=max_seq_length,
        num_examples=batch_size)
    input_paths = ','.join([input_path_1, input_path_2])
    data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
        is_training=False,
        input_path=input_paths,
        seq_bucket_lengths=[64, 128],
        use_position_id=True,
        global_batch_size=batch_size * 2)
    dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
        data_config).load()
    dataset_it = iter(dataset)
    with self.assertRaisesRegex(
        tf.errors.InvalidArgumentError, '.*Number of non padded mask tokens.*'):
      next(dataset_it)


if __name__ == '__main__':
  tf.test.main()