File size: 10,614 Bytes
f18e71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Loads dataset for the sentence prediction (classification) task."""
import dataclasses
import functools
from typing import List, Mapping, Optional, Tuple

import tensorflow as tf, tf_keras
import tensorflow_hub as hub

from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp import modeling
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory

LABEL_TYPES_MAP = {'int': tf.int64, 'float': tf.float32}


@dataclasses.dataclass
class SentencePredictionDataConfig(cfg.DataConfig):
  """Data config for sentence prediction task (tasks/sentence_prediction)."""
  input_path: str = ''
  global_batch_size: int = 32
  is_training: bool = True
  seq_length: int = 128
  label_type: str = 'int'
  # Whether to include the example id number.
  include_example_id: bool = False
  label_field: str = 'label_ids'
  # Maps the key in TfExample to feature name.
  # E.g 'label_ids' to 'next_sentence_labels'
  label_name: Optional[Tuple[str, str]] = None
  # Either tfrecord, sstable, or recordio.
  file_type: str = 'tfrecord'


@data_loader_factory.register_data_loader_cls(SentencePredictionDataConfig)
class SentencePredictionDataLoader(data_loader.DataLoader):
  """A class to load dataset for sentence prediction (classification) task."""

  def __init__(self, params):
    self._params = params
    self._seq_length = params.seq_length
    self._include_example_id = params.include_example_id
    self._label_field = params.label_field
    if params.label_name:
      self._label_name_mapping = dict([params.label_name])
    else:
      self._label_name_mapping = dict()

  def name_to_features_spec(self):
    """Defines features to decode. Subclass may override to append features."""
    label_type = LABEL_TYPES_MAP[self._params.label_type]
    name_to_features = {
        'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        self._label_field: tf.io.FixedLenFeature([], label_type),
    }
    if self._include_example_id:
      name_to_features['example_id'] = tf.io.FixedLenFeature([], tf.int64)

    return name_to_features

  def _decode(self, record: tf.Tensor):
    """Decodes a serialized tf.Example."""
    example = tf.io.parse_single_example(record, self.name_to_features_spec())

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in example:
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.cast(t, tf.int32)
      example[name] = t

    return example

  def _parse(self, record: Mapping[str, tf.Tensor]):
    """Parses raw tensors into a dict of tensors to be consumed by the model."""
    key_mapping = {
        'input_ids': 'input_word_ids',
        'input_mask': 'input_mask',
        'segment_ids': 'input_type_ids'
    }
    ret = {}
    for record_key in record:
      if record_key in key_mapping:
        ret[key_mapping[record_key]] = record[record_key]
      else:
        ret[record_key] = record[record_key]

    if self._label_field in self._label_name_mapping:
      ret[self._label_name_mapping[self._label_field]] = record[
          self._label_field]

    return ret

  def load(self, input_context: Optional[tf.distribute.InputContext] = None):
    """Returns a tf.dataset.Dataset."""
    reader = input_reader.InputReader(
        dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
        params=self._params,
        decoder_fn=self._decode,
        parser_fn=self._parse)
    return reader.read(input_context)


@dataclasses.dataclass
class SentencePredictionTextDataConfig(cfg.DataConfig):
  """Data config for sentence prediction task with raw text."""
  # Either set `input_path`...
  input_path: str = ''
  # Either `int` or `float`.
  label_type: str = 'int'
  # ...or `tfds_name` and `tfds_split` to specify input.
  tfds_name: str = ''
  tfds_split: str = ''
  # The name of the text feature fields. The text features will be
  # concatenated in order.
  text_fields: Optional[List[str]] = None
  label_field: str = 'label'
  global_batch_size: int = 32
  seq_length: int = 128
  is_training: bool = True
  # Either build preprocessing with Python code by specifying these values
  # for modeling.layers.BertTokenizer()/SentencepieceTokenizer()....
  tokenization: str = 'WordPiece'  # WordPiece or SentencePiece
  # Text vocab file if tokenization is WordPiece, or sentencepiece.ModelProto
  # file if tokenization is SentencePiece.
  vocab_file: str = ''
  lower_case: bool = True
  # ...or load preprocessing from a SavedModel at this location.
  preprocessing_hub_module_url: str = ''
  # Either tfrecord or sstsable or recordio.
  file_type: str = 'tfrecord'
  include_example_id: bool = False


class TextProcessor(tf.Module):
  """Text features processing for sentence prediction task."""

  def __init__(self,

               seq_length: int,

               vocab_file: Optional[str] = None,

               tokenization: Optional[str] = None,

               lower_case: Optional[bool] = True,

               preprocessing_hub_module_url: Optional[str] = None):
    if preprocessing_hub_module_url:
      self._preprocessing_hub_module = hub.load(preprocessing_hub_module_url)
      self._tokenizer = self._preprocessing_hub_module.tokenize
      self._pack_inputs = functools.partial(
          self._preprocessing_hub_module.bert_pack_inputs,
          seq_length=seq_length)
      return

    if tokenization == 'WordPiece':
      self._tokenizer = modeling.layers.BertTokenizer(
          vocab_file=vocab_file, lower_case=lower_case)
    elif tokenization == 'SentencePiece':
      self._tokenizer = modeling.layers.SentencepieceTokenizer(
          model_file_path=vocab_file,
          lower_case=lower_case,
          strip_diacritics=True)  # Strip diacritics to follow ALBERT model
    else:
      raise ValueError('Unsupported tokenization: %s' % tokenization)

    self._pack_inputs = modeling.layers.BertPackInputs(
        seq_length=seq_length,
        special_tokens_dict=self._tokenizer.get_special_tokens_dict())

  def __call__(self, segments):
    segments = [self._tokenizer(s) for s in segments]
    # BertTokenizer returns a RaggedTensor with shape [batch, word, subword],
    # and SentencepieceTokenizer returns a RaggedTensor with shape
    # [batch, sentencepiece],
    segments = [
        tf.cast(x.merge_dims(1, -1) if x.shape.rank > 2 else x, tf.int32)
        for x in segments
    ]
    return self._pack_inputs(segments)


@data_loader_factory.register_data_loader_cls(SentencePredictionTextDataConfig)
class SentencePredictionTextDataLoader(data_loader.DataLoader):
  """Loads dataset with raw text for sentence prediction task."""

  def __init__(self, params):
    if bool(params.tfds_name) != bool(params.tfds_split):
      raise ValueError('`tfds_name` and `tfds_split` should be specified or '
                       'unspecified at the same time.')
    if bool(params.tfds_name) == bool(params.input_path):
      raise ValueError('Must specify either `tfds_name` and `tfds_split` '
                       'or `input_path`.')
    if not params.text_fields:
      raise ValueError('Unexpected empty text fields.')
    if bool(params.vocab_file) == bool(params.preprocessing_hub_module_url):
      raise ValueError('Must specify exactly one of vocab_file (with matching '
                       'lower_case flag) or preprocessing_hub_module_url.')

    self._params = params
    self._text_fields = params.text_fields
    self._label_field = params.label_field
    self._label_type = params.label_type
    self._include_example_id = params.include_example_id
    self._text_processor = TextProcessor(
        seq_length=params.seq_length,
        vocab_file=params.vocab_file,
        tokenization=params.tokenization,
        lower_case=params.lower_case,
        preprocessing_hub_module_url=params.preprocessing_hub_module_url)

  def _bert_preprocess(self, record: Mapping[str, tf.Tensor]):
    """Berts preprocess."""
    segments = [record[x] for x in self._text_fields]
    model_inputs = self._text_processor(segments)
    for key in record:
      if key not in self._text_fields:
        model_inputs[key] = record[key]
    return model_inputs

  def name_to_features_spec(self):
    name_to_features = {}
    for text_field in self._text_fields:
      name_to_features[text_field] = tf.io.FixedLenFeature([], tf.string)

    label_type = LABEL_TYPES_MAP[self._label_type]
    name_to_features[self._label_field] = tf.io.FixedLenFeature([], label_type)
    if self._include_example_id:
      name_to_features['example_id'] = tf.io.FixedLenFeature([], tf.int64)
    return name_to_features

  def _decode(self, record: tf.Tensor):
    """Decodes a serialized tf.Example."""
    example = tf.io.parse_single_example(record, self.name_to_features_spec())
    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in example:
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.cast(t, tf.int32)
      example[name] = t

    return example

  def load(self, input_context: Optional[tf.distribute.InputContext] = None):
    """Returns a tf.dataset.Dataset."""
    reader = input_reader.InputReader(
        dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
        decoder_fn=self._decode if self._params.input_path else None,
        params=self._params,
        postprocess_fn=self._bert_preprocess)
    return reader.read(input_context)