File size: 17,142 Bytes
3744210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# coding=utf-8
"""Tokenization classes implementation.



The file is forked from:

https://github.com/google-research/bert/blob/master/tokenization.py.

"""

import collections
import re
import unicodedata

import six
import tensorflow as tf, tf_keras

import sentencepiece as spm

SPIECE_UNDERLINE = "▁"


def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
  """Checks whether the casing config is consistent with the checkpoint name."""

  # The casing has to be passed in by the user and there is no explicit check
  # as to whether it matches the checkpoint. The casing information probably
  # should have been stored in the bert_config.json file, but it's not, so
  # we have to heuristically detect it to validate.

  if not init_checkpoint:
    return

  m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
  if m is None:
    return

  model_name = m.group(1)

  lower_models = [
      "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
      "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
  ]

  cased_models = [
      "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
      "multi_cased_L-12_H-768_A-12"
  ]

  is_bad_config = False
  if model_name in lower_models and not do_lower_case:
    is_bad_config = True
    actual_flag = "False"
    case_name = "lowercased"
    opposite_flag = "True"

  if model_name in cased_models and do_lower_case:
    is_bad_config = True
    actual_flag = "True"
    case_name = "cased"
    opposite_flag = "False"

  if is_bad_config:
    raise ValueError(
        "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
        "However, `%s` seems to be a %s model, so you "
        "should pass in `--do_lower_case=%s` so that the fine-tuning matches "
        "how the model was pre-training. If this error is wrong, please "
        "just comment out this check." %
        (actual_flag, init_checkpoint, model_name, case_name, opposite_flag))


def convert_to_unicode(text):
  """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
  if six.PY3:
    if isinstance(text, str):
      return text
    elif isinstance(text, bytes):
      return text.decode("utf-8", "ignore")
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  elif six.PY2:
    if isinstance(text, str):
      return text.decode("utf-8", "ignore")
    elif isinstance(text, unicode):
      return text
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  else:
    raise ValueError("Not running on Python2 or Python 3?")


def printable_text(text):
  """Returns text encoded in a way suitable for print or `tf.logging`."""

  # These functions want `str` for both Python2 and Python3, but in one case
  # it's a Unicode string and in the other it's a byte string.
  if six.PY3:
    if isinstance(text, str):
      return text
    elif isinstance(text, bytes):
      return text.decode("utf-8", "ignore")
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  elif six.PY2:
    if isinstance(text, str):
      return text
    elif isinstance(text, unicode):
      return text.encode("utf-8")
    else:
      raise ValueError("Unsupported string type: %s" % (type(text)))
  else:
    raise ValueError("Not running on Python2 or Python 3?")


def load_vocab(vocab_file):
  """Loads a vocabulary file into a dictionary."""
  vocab = collections.OrderedDict()
  index = 0
  with tf.io.gfile.GFile(vocab_file, "r") as reader:
    while True:
      token = convert_to_unicode(reader.readline())
      if not token:
        break
      token = token.strip()
      vocab[token] = index
      index += 1
  return vocab


def convert_by_vocab(vocab, items):
  """Converts a sequence of [tokens|ids] using the vocab."""
  output = []
  for item in items:
    output.append(vocab[item])
  return output


def convert_tokens_to_ids(vocab, tokens):
  return convert_by_vocab(vocab, tokens)


def convert_ids_to_tokens(inv_vocab, ids):
  return convert_by_vocab(inv_vocab, ids)


def whitespace_tokenize(text):
  """Runs basic whitespace cleaning and splitting on a piece of text."""
  text = text.strip()
  if not text:
    return []
  tokens = text.split()
  return tokens


class FullTokenizer(object):
  """Runs end-to-end tokenziation."""

  def __init__(self, vocab_file, do_lower_case=True, split_on_punc=True):
    self.vocab = load_vocab(vocab_file)
    self.inv_vocab = {v: k for k, v in self.vocab.items()}
    self.basic_tokenizer = BasicTokenizer(
        do_lower_case=do_lower_case, split_on_punc=split_on_punc)
    self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)

  def tokenize(self, text):
    split_tokens = []
    for token in self.basic_tokenizer.tokenize(text):
      for sub_token in self.wordpiece_tokenizer.tokenize(token):
        split_tokens.append(sub_token)

    return split_tokens

  def convert_tokens_to_ids(self, tokens):
    return convert_by_vocab(self.vocab, tokens)

  def convert_ids_to_tokens(self, ids):
    return convert_by_vocab(self.inv_vocab, ids)


class BasicTokenizer(object):
  """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

  def __init__(self, do_lower_case=True, split_on_punc=True):
    """Constructs a BasicTokenizer.



    Args:

      do_lower_case: Whether to lower case the input.

      split_on_punc: Whether to apply split on punctuations. By default BERT

        starts a new token for punctuations. This makes detokenization difficult

        for tasks like seq2seq decoding.

    """
    self.do_lower_case = do_lower_case
    self.split_on_punc = split_on_punc

  def tokenize(self, text):
    """Tokenizes a piece of text."""
    text = convert_to_unicode(text)
    text = self._clean_text(text)

    # This was added on November 1st, 2018 for the multilingual and Chinese
    # models. This is also applied to the English models now, but it doesn't
    # matter since the English models were not trained on any Chinese data
    # and generally don't have any Chinese data in them (there are Chinese
    # characters in the vocabulary because Wikipedia does have some Chinese
    # words in the English Wikipedia.).
    text = self._tokenize_chinese_chars(text)

    orig_tokens = whitespace_tokenize(text)
    split_tokens = []
    for token in orig_tokens:
      if self.do_lower_case:
        token = token.lower()
        token = self._run_strip_accents(token)
      if self.split_on_punc:
        split_tokens.extend(self._run_split_on_punc(token))
      else:
        split_tokens.append(token)

    output_tokens = whitespace_tokenize(" ".join(split_tokens))
    return output_tokens

  def _run_strip_accents(self, text):
    """Strips accents from a piece of text."""
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
      cat = unicodedata.category(char)
      if cat == "Mn":
        continue
      output.append(char)
    return "".join(output)

  def _run_split_on_punc(self, text):
    """Splits punctuation on a piece of text."""
    chars = list(text)
    i = 0
    start_new_word = True
    output = []
    while i < len(chars):
      char = chars[i]
      if _is_punctuation(char):
        output.append([char])
        start_new_word = True
      else:
        if start_new_word:
          output.append([])
        start_new_word = False
        output[-1].append(char)
      i += 1

    return ["".join(x) for x in output]

  def _tokenize_chinese_chars(self, text):
    """Adds whitespace around any CJK character."""
    output = []
    for char in text:
      cp = ord(char)
      if self._is_chinese_char(cp):
        output.append(" ")
        output.append(char)
        output.append(" ")
      else:
        output.append(char)
    return "".join(output)

  def _is_chinese_char(self, cp):
    """Checks whether CP is the codepoint of a CJK character."""
    # This defines a "chinese character" as anything in the CJK Unicode block:
    #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
    #
    # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
    # despite its name. The modern Korean Hangul alphabet is a different block,
    # as is Japanese Hiragana and Katakana. Those alphabets are used to write
    # space-separated words, so they are not treated specially and handled
    # like the all of the other languages.
    if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
        (cp >= 0x3400 and cp <= 0x4DBF) or  #
        (cp >= 0x20000 and cp <= 0x2A6DF) or  #
        (cp >= 0x2A700 and cp <= 0x2B73F) or  #
        (cp >= 0x2B740 and cp <= 0x2B81F) or  #
        (cp >= 0x2B820 and cp <= 0x2CEAF) or
        (cp >= 0xF900 and cp <= 0xFAFF) or  #
        (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
      return True

    return False

  def _clean_text(self, text):
    """Performs invalid character removal and whitespace cleanup on text."""
    output = []
    for char in text:
      cp = ord(char)
      if cp == 0 or cp == 0xfffd or _is_control(char):
        continue
      if _is_whitespace(char):
        output.append(" ")
      else:
        output.append(char)
    return "".join(output)


class WordpieceTokenizer(object):
  """Runs WordPiece tokenziation."""

  def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=400):
    self.vocab = vocab
    self.unk_token = unk_token
    self.max_input_chars_per_word = max_input_chars_per_word

  def tokenize(self, text):
    """Tokenizes a piece of text into its word pieces.



    This uses a greedy longest-match-first algorithm to perform tokenization

    using the given vocabulary.



    For example:

      input = "unaffable"

      output = ["un", "##aff", "##able"]



    Args:

      text: A single token or whitespace separated tokens. This should have

        already been passed through `BasicTokenizer.



    Returns:

      A list of wordpiece tokens.

    """

    text = convert_to_unicode(text)

    output_tokens = []
    for token in whitespace_tokenize(text):
      chars = list(token)
      if len(chars) > self.max_input_chars_per_word:
        output_tokens.append(self.unk_token)
        continue

      is_bad = False
      start = 0
      sub_tokens = []
      while start < len(chars):
        end = len(chars)
        cur_substr = None
        while start < end:
          substr = "".join(chars[start:end])
          if start > 0:
            substr = "##" + substr
          if substr in self.vocab:
            cur_substr = substr
            break
          end -= 1
        if cur_substr is None:
          is_bad = True
          break
        sub_tokens.append(cur_substr)
        start = end

      if is_bad:
        output_tokens.append(self.unk_token)
      else:
        output_tokens.extend(sub_tokens)
    return output_tokens


def _is_whitespace(char):
  """Checks whether `chars` is a whitespace character."""
  # \t, \n, and \r are technically control characters but we treat them
  # as whitespace since they are generally considered as such.
  if char == " " or char == "\t" or char == "\n" or char == "\r":
    return True
  cat = unicodedata.category(char)
  if cat == "Zs":
    return True
  return False


def _is_control(char):
  """Checks whether `chars` is a control character."""
  # These are technically control characters but we count them as whitespace
  # characters.
  if char == "\t" or char == "\n" or char == "\r":
    return False
  cat = unicodedata.category(char)
  if cat in ("Cc", "Cf"):
    return True
  return False


def _is_punctuation(char):
  """Checks whether `chars` is a punctuation character."""
  cp = ord(char)
  # We treat all non-letter/number ASCII as punctuation.
  # Characters such as "^", "$", and "`" are not in the Unicode
  # Punctuation class but we treat them as punctuation anyways, for
  # consistency.
  if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
      (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
    return True
  cat = unicodedata.category(char)
  if cat.startswith("P"):
    return True
  return False


def preprocess_text(inputs, remove_space=True, lower=False):
  """Preprocesses data by removing extra space and normalize data.



  This method is used together with sentence piece tokenizer and is forked from:

  https://github.com/google-research/google-research/blob/e1f6fa00/albert/tokenization.py



  Args:

    inputs: The input text.

    remove_space: Whether to remove the extra space.

    lower: Whether to lowercase the text.



  Returns:

    The preprocessed text.



  """
  outputs = inputs
  if remove_space:
    outputs = " ".join(inputs.strip().split())

  if six.PY2 and isinstance(outputs, str):
    try:
      outputs = six.ensure_text(outputs, "utf-8")
    except UnicodeDecodeError:
      outputs = six.ensure_text(outputs, "latin-1")

  outputs = unicodedata.normalize("NFKD", outputs)
  outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
  if lower:
    outputs = outputs.lower()

  return outputs


def encode_pieces(sp_model, text, sample=False):
  """Segements text into pieces.



  This method is used together with sentence piece tokenizer and is forked from:

  https://github.com/google-research/google-research/blob/e1f6fa00/albert/tokenization.py





  Args:

    sp_model: A spm.SentencePieceProcessor object.

    text: The input text to be segemented.

    sample: Whether to randomly sample a segmentation output or return a

      deterministic one.



  Returns:

    A list of token pieces.

  """
  if six.PY2 and isinstance(text, six.text_type):
    text = six.ensure_binary(text, "utf-8")

  if not sample:
    pieces = sp_model.EncodeAsPieces(text)
  else:
    pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1)
  new_pieces = []
  for piece in pieces:
    piece = printable_text(piece)
    if len(piece) > 1 and piece[-1] == "," and piece[-2].isdigit():
      cur_pieces = sp_model.EncodeAsPieces(piece[:-1].replace(
          SPIECE_UNDERLINE, ""))
      if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
        if len(cur_pieces[0]) == 1:
          cur_pieces = cur_pieces[1:]
        else:
          cur_pieces[0] = cur_pieces[0][1:]
      cur_pieces.append(piece[-1])
      new_pieces.extend(cur_pieces)
    else:
      new_pieces.append(piece)

  return new_pieces


def encode_ids(sp_model, text, sample=False):
  """Segments text and return token ids.



  This method is used together with sentence piece tokenizer and is forked from:

  https://github.com/google-research/google-research/blob/e1f6fa00/albert/tokenization.py



  Args:

    sp_model: A spm.SentencePieceProcessor object.

    text: The input text to be segemented.

    sample: Whether to randomly sample a segmentation output or return a

      deterministic one.



  Returns:

    A list of token ids.

  """
  pieces = encode_pieces(sp_model, text, sample=sample)
  ids = [sp_model.PieceToId(piece) for piece in pieces]
  return ids


class FullSentencePieceTokenizer(object):
  """Runs end-to-end sentence piece tokenization.



  The interface of this class is intended to keep the same as above

  `FullTokenizer` class for easier usage.

  """

  def __init__(self, sp_model_file):
    """Inits FullSentencePieceTokenizer.



    Args:

      sp_model_file: The path to the sentence piece model file.

    """
    self.sp_model = spm.SentencePieceProcessor()
    self.sp_model.Load(sp_model_file)
    self.vocab = {
        self.sp_model.IdToPiece(i): i
        for i in six.moves.range(self.sp_model.GetPieceSize())
    }

  def tokenize(self, text):
    """Tokenizes text into pieces."""
    return encode_pieces(self.sp_model, text)

  def convert_tokens_to_ids(self, tokens):
    """Converts a list of tokens to a list of ids."""
    return [self.sp_model.PieceToId(printable_text(token)) for token in tokens]

  def convert_ids_to_tokens(self, ids):
    """Converts a list of ids ot a list of tokens."""
    return [self.sp_model.IdToPiece(id_) for id_ in ids]