File size: 5,031 Bytes
f18e71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for official.nlp.data.wmt_dataloader."""
import os
from absl.testing import parameterized

import tensorflow as tf, tf_keras

from sentencepiece import SentencePieceTrainer
from official.nlp.data import wmt_dataloader


def _generate_line_file(filepath, lines):
  with tf.io.gfile.GFile(filepath, 'w') as f:
    for l in lines:
      f.write('{}\n'.format(l))


def _generate_record_file(filepath, src_lines, tgt_lines, unique_id=False):
  writer = tf.io.TFRecordWriter(filepath)
  for i, (src, tgt) in enumerate(zip(src_lines, tgt_lines)):
    features = {
        'en': tf.train.Feature(
            bytes_list=tf.train.BytesList(
                value=[src.encode()])),
        'reverse_en': tf.train.Feature(
            bytes_list=tf.train.BytesList(
                value=[tgt.encode()])),
    }
    if unique_id:
      features['unique_id'] = tf.train.Feature(
          int64_list=tf.train.Int64List(value=[i]))
    example = tf.train.Example(
        features=tf.train.Features(
            feature=features))
    writer.write(example.SerializeToString())
  writer.close()


def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1):
  argstr = ' '.join([
      f'--input={input_path}', f'--vocab_size={vocab_size}',
      '--character_coverage=0.995',
      f'--model_prefix={model_path}', '--model_type=bpe',
      '--bos_id=-1', '--pad_id=0', f'--eos_id={eos_id}', '--unk_id=2'
  ])
  SentencePieceTrainer.Train(argstr)


class WMTDataLoaderTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(WMTDataLoaderTest, self).setUp()
    self._temp_dir = self.get_temp_dir()
    src_lines = [
        'abc ede fg',
        'bbcd ef a g',
        'de f a a g'
    ]
    tgt_lines = [
        'dd cc a ef  g',
        'bcd ef a g',
        'gef cd ba'
    ]
    self._record_train_input_path = os.path.join(self._temp_dir, 'train.record')
    _generate_record_file(self._record_train_input_path, src_lines, tgt_lines)
    self._record_test_input_path = os.path.join(self._temp_dir, 'test.record')
    _generate_record_file(self._record_test_input_path, src_lines, tgt_lines,
                          unique_id=True)
    self._sentencepeice_input_path = os.path.join(self._temp_dir, 'inputs.txt')
    _generate_line_file(self._sentencepeice_input_path, src_lines + tgt_lines)
    sentencepeice_model_prefix = os.path.join(self._temp_dir, 'sp')
    _train_sentencepiece(self._sentencepeice_input_path, 20,
                         sentencepeice_model_prefix)
    self._sentencepeice_model_path = '{}.model'.format(
        sentencepeice_model_prefix)

  @parameterized.named_parameters(

      ('train_static', True, True, 100, (2, 35)),

      ('train_non_static', True, False, 100, (12, 7)),

      ('non_train_static', False, True, 3, (3, 35)),

      ('non_train_non_static', False, False, 50, (2, 7)),)
  def test_load_dataset(

      self, is_training, static_batch, batch_size, expected_shape):
    data_config = wmt_dataloader.WMTDataConfig(
        input_path=self._record_train_input_path
        if is_training else self._record_test_input_path,
        max_seq_length=35,
        global_batch_size=batch_size,
        is_training=is_training,
        static_batch=static_batch,
        src_lang='en',
        tgt_lang='reverse_en',
        sentencepiece_model_path=self._sentencepeice_model_path)
    dataset = wmt_dataloader.WMTDataLoader(data_config).load()
    examples = next(iter(dataset))
    inputs, targets = examples['inputs'], examples['targets']
    self.assertEqual(inputs.shape, expected_shape)
    self.assertEqual(targets.shape, expected_shape)

  def test_load_dataset_raise_invalid_window(self):
    batch_tokens_size = 10  # this is too small to form buckets.
    data_config = wmt_dataloader.WMTDataConfig(
        input_path=self._record_train_input_path,
        max_seq_length=100,
        global_batch_size=batch_tokens_size,
        is_training=True,
        static_batch=False,
        src_lang='en',
        tgt_lang='reverse_en',
        sentencepiece_model_path=self._sentencepeice_model_path)
    with self.assertRaisesRegex(
        ValueError, 'The token budget, global batch size, is too small.*'):
      _ = wmt_dataloader.WMTDataLoader(data_config).load()


if __name__ == '__main__':
  tf.test.main()