Spaces:
Running
Running
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import tf_keras as keras | |
import pandas as pd | |
from tensorflow.keras.models import load_model | |
from official.nlp.data import classifier_data_lib | |
from official.nlp.tools import tokenization | |
import joblib | |
model = load_model('best_model.h5', custom_objects={'KerasLayer': hub.KerasLayer}) | |
vocab_file = model.resolved_object.vocab_file.asset_path.numpy() | |
do_lower_case = model.resolved_object.do_lower_case.numpy() | |
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case) | |
# Parameters | |
max_seq_length = 128 | |
label_list = 424 | |
dummy_label = 100 | |
# Define a function to preprocess the new data | |
def get_feature_new(text, max_seq_length, tokenizer, dummy_label): | |
example = classifier_data_lib.InputExample(guid=None, | |
text_a=text.numpy().decode('utf-8'), | |
text_b=None, | |
label=dummy_label) # Use a valid dummy label | |
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer) | |
return feature.input_ids, feature.input_mask, feature.segment_ids | |
def get_feature_map_new(text): | |
input_ids, input_mask, segment_ids = tf.py_function( | |
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label), | |
inp=[text], | |
Tout=[tf.int32, tf.int32, tf.int32] | |
) | |
input_ids.set_shape([max_seq_length]) | |
input_mask.set_shape([max_seq_length]) | |
segment_ids.set_shape([max_seq_length]) | |
x = {'input_word_ids': input_ids, | |
'input_mask': input_mask, | |
'input_type_ids': segment_ids} | |
return x | |
def preprocess_new_data(texts): | |
dataset = tf.data.Dataset.from_tensor_slices((texts,)) | |
dataset = dataset.map(get_feature_map_new, | |
num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
dataset = dataset.batch(32, drop_remainder=False) | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
return dataset |