ISCO-code-predictor-api / classifier_data_lib.py
Pradeep Kumar
Upload 33 files
f18e71f verified
raw
history blame
58.7 kB
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT library to process data for classification task."""
import collections
import csv
import importlib
import json
import os
from absl import logging
import tensorflow as tf, tf_keras
import tensorflow_datasets as tfds
from official.nlp.tools import tokenization
class InputExample(object):
"""A single training/test example for simple seq regression/classification."""
def __init__(self,
guid,
text_a,
text_b=None,
label=None,
weight=None,
example_id=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string for classification, float for regression. The
label of the example. This should be specified for train and dev
examples, but not for test examples.
weight: (Optional) float. The weight of the example to be used during
training.
example_id: (Optional) int. The int identification number of example in
the corpus.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
self.weight = weight
self.example_id = example_id
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
is_real_example=True,
weight=None,
example_id=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.is_real_example = is_real_example
self.weight = weight
self.example_id = example_id
class DataProcessor(object):
"""Base class for converters for seq regression/classification datasets."""
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
self.process_text_fn = process_text_fn
self.is_regression = False
self.label_type = None
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@staticmethod
def get_processor_name():
"""Gets the string identifier of the processor."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.io.gfile.GFile(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
@classmethod
def _read_jsonl(cls, input_file):
"""Reads a json line file."""
with tf.io.gfile.GFile(input_file, "r") as f:
lines = []
for json_str in f:
lines.append(json.loads(json_str))
return lines
def featurize_example(self, *kargs, **kwargs):
"""Converts a single `InputExample` into a single `InputFeatures`."""
return convert_single_example(*kargs, **kwargs)
class DefaultGLUEDataProcessor(DataProcessor):
"""Processor for the SuperGLUE dataset."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("validation")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("test")
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
raise NotImplementedError()
class AxProcessor(DataProcessor):
"""Processor for the AX dataset (GLUE diagnostics dataset)."""
def get_train_examples(self, data_dir):
"""See base class."""
train_mnli_dataset = tfds.load(
"glue/mnli", split="train", try_gcs=True).as_numpy_iterator()
return self._create_examples_tfds(train_mnli_dataset, "train")
def get_dev_examples(self, data_dir):
"""See base class."""
val_mnli_dataset = tfds.load(
"glue/mnli", split="validation_matched",
try_gcs=True).as_numpy_iterator()
return self._create_examples_tfds(val_mnli_dataset, "validation")
def get_test_examples(self, data_dir):
"""See base class."""
test_ax_dataset = tfds.load(
"glue/ax", split="test", try_gcs=True).as_numpy_iterator()
return self._create_examples_tfds(test_ax_dataset, "test")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "AX"
def _create_examples_tfds(self, dataset, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "contradiction"
text_a = self.process_text_fn(example["hypothesis"])
text_b = self.process_text_fn(example["premise"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class ColaProcessor(DefaultGLUEDataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "COLA"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
return examples
class ImdbProcessor(DataProcessor):
"""Processor for the IMDb dataset."""
def get_labels(self):
return ["neg", "pos"]
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train"))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test"))
@staticmethod
def get_processor_name():
"""See base class."""
return "IMDB"
def _create_examples(self, data_dir):
"""Creates examples."""
examples = []
for label in ["neg", "pos"]:
cur_dir = os.path.join(data_dir, label)
for filename in tf.io.gfile.listdir(cur_dir):
if not filename.endswith("txt"):
continue
if len(examples) % 1000 == 0:
logging.info("Loading dev example %d", len(examples))
path = os.path.join(cur_dir, filename)
with tf.io.gfile.GFile(path, "r") as f:
text = f.read().strip().replace("<br />", " ")
examples.append(
InputExample(
guid="unused_id", text_a=text, text_b=None, label=label))
return examples
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def __init__(self,
mnli_type="matched",
process_text_fn=tokenization.convert_to_unicode):
super(MnliProcessor, self).__init__(process_text_fn)
self.dataset = tfds.load("glue/mnli", try_gcs=True)
if mnli_type not in ("matched", "mismatched"):
raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
self.mnli_type = mnli_type
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("train")
def get_dev_examples(self, data_dir):
"""See base class."""
if self.mnli_type == "matched":
return self._create_examples_tfds("validation_matched")
else:
return self._create_examples_tfds("validation_mismatched")
def get_test_examples(self, data_dir):
"""See base class."""
if self.mnli_type == "matched":
return self._create_examples_tfds("test_matched")
else:
return self._create_examples_tfds("test_mismatched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "MNLI"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "contradiction"
text_a = self.process_text_fn(example["hypothesis"])
text_b = self.process_text_fn(example["premise"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class MrpcProcessor(DefaultGLUEDataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "MRPC"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class PawsxProcessor(DataProcessor):
"""Processor for the PAWS-X data set."""
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
def __init__(self,
language="en",
process_text_fn=tokenization.convert_to_unicode):
super(PawsxProcessor, self).__init__(process_text_fn)
if language == "all":
self.languages = PawsxProcessor.supported_languages
elif language not in PawsxProcessor.supported_languages:
raise ValueError("language %s is not supported for PAWS-X task." %
language)
else:
self.languages = [language]
def get_train_examples(self, data_dir):
"""See base class."""
lines = []
for language in self.languages:
if language == "en":
train_tsv = "train.tsv"
else:
train_tsv = "translated_train.tsv"
# Skips the header.
lines.extend(
self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
examples = []
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = []
for lang in PawsxProcessor.supported_languages:
lines.extend(
self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
examples = []
for i, line in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {k: [] for k in self.supported_languages}
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
for i, line in enumerate(lines):
guid = "test-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-PAWS-X"
class QnliProcessor(DefaultGLUEDataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "QNLI"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "entailment"
text_a = self.process_text_fn(example["question"])
text_b = self.process_text_fn(example["sentence"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class QqpProcessor(DefaultGLUEDataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "QQP"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["question1"])
text_b = self.process_text_fn(example["question2"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class RteProcessor(DefaultGLUEDataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def get_labels(self):
"""See base class."""
# All datasets are converted to 2-class split, where for 3-class datasets we
# collapse neutral and contradiction into not_entailment.
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "RTE"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "entailment"
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class SstProcessor(DefaultGLUEDataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "SST-2"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
return examples
class StsBProcessor(DefaultGLUEDataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
self.is_regression = True
self.label_type = float
self._labels = None
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = 0.0
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = self.label_type(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
def get_labels(self):
"""See base class."""
return self._labels
@staticmethod
def get_processor_name():
"""See base class."""
return "STS-B"
class TfdsProcessor(DataProcessor):
"""Processor for generic text classification and regression TFDS data set.
The TFDS parameters are expected to be provided in the tfds_params string, in
a comma-separated list of parameter assignments.
Examples:
tfds_params="dataset=scicite,text_key=string"
tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
tfds_params="dataset=glue/cola,text_key=sentence"
tfds_params="dataset=glue/sst2,text_key=sentence"
tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
"is_regression=true,label_type=float"
tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
"skip_label=-1"
Possible parameters (please refer to the documentation of Tensorflow Datasets
(TFDS) for the meaning of individual parameters):
dataset: Required dataset name (potentially with subset and version number).
data_dir: Optional TFDS source root directory.
module_import: Optional Dataset module to import.
train_split: Name of the train split (defaults to `train`).
dev_split: Name of the dev split (defaults to `validation`).
test_split: Name of the test split (defaults to `test`).
text_key: Key of the text_a feature (defaults to `text`).
text_b_key: Key of the second text feature if available.
label_key: Key of the label feature (defaults to `label`).
test_text_key: Key of the text feature to use in test set.
test_text_b_key: Key of the second text feature to use in test set.
test_label: String to be used as the label for all test examples.
label_type: Type of the label key (defaults to `int`).
weight_key: Key of the float sample weight (is not used if not provided).
is_regression: Whether the task is a regression problem (defaults to False).
skip_label: Skip examples with given label (defaults to None).
"""
def __init__(self,
tfds_params,
process_text_fn=tokenization.convert_to_unicode):
super(TfdsProcessor, self).__init__(process_text_fn)
self._process_tfds_params_str(tfds_params)
if self.module_import:
importlib.import_module(self.module_import)
self.dataset, info = tfds.load(
self.dataset_name, data_dir=self.data_dir, with_info=True)
if self.is_regression:
self._labels = None
else:
self._labels = list(range(info.features[self.label_key].num_classes))
def _process_tfds_params_str(self, params_str):
"""Extracts TFDS parameters from a comma-separated assignments string."""
dtype_map = {"int": int, "float": float}
cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]
tuples = [x.split("=") for x in params_str.split(",")]
d = {k.strip(): v.strip() for k, v in tuples}
self.dataset_name = d["dataset"] # Required.
self.data_dir = d.get("data_dir", None)
self.module_import = d.get("module_import", None)
self.train_split = d.get("train_split", "train")
self.dev_split = d.get("dev_split", "validation")
self.test_split = d.get("test_split", "test")
self.text_key = d.get("text_key", "text")
self.text_b_key = d.get("text_b_key", None)
self.label_key = d.get("label_key", "label")
self.test_text_key = d.get("test_text_key", self.text_key)
self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
self.test_label = d.get("test_label", "test_example")
self.label_type = dtype_map[d.get("label_type", "int")]
self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
self.weight_key = d.get("weight_key", None)
self.skip_label = d.get("skip_label", None)
if self.skip_label is not None:
self.skip_label = self.label_type(self.skip_label)
def get_train_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.train_split, "train")
def get_dev_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.dev_split, "dev")
def get_test_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.test_split, "test")
def get_labels(self):
return self._labels
def get_processor_name(self):
return "TFDS_" + self.dataset_name
def _create_examples(self, split_name, set_type):
"""Creates examples for the training/dev/test sets."""
if split_name not in self.dataset:
raise ValueError("Split {} not available.".format(split_name))
dataset = self.dataset[split_name].as_numpy_iterator()
examples = []
text_b, weight = None, None
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
if set_type == "test":
text_a = self.process_text_fn(example[self.test_text_key])
if self.test_text_b_key:
text_b = self.process_text_fn(example[self.test_text_b_key])
label = self.test_label
else:
text_a = self.process_text_fn(example[self.text_key])
if self.text_b_key:
text_b = self.process_text_fn(example[self.text_b_key])
label = self.label_type(example[self.label_key])
if self.skip_label is not None and label == self.skip_label:
continue
if self.weight_key:
weight = float(example[self.weight_key])
examples.append(
InputExample(
guid=guid,
text_a=text_a,
text_b=text_b,
label=label,
weight=weight))
return examples
class WnliProcessor(DefaultGLUEDataProcessor):
"""Processor for the WNLI data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "WNLI"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class XnliProcessor(DataProcessor):
"""Processor for the XNLI data set."""
supported_languages = [
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
"ur", "vi", "zh"
]
def __init__(self,
language="en",
process_text_fn=tokenization.convert_to_unicode):
super(XnliProcessor, self).__init__(process_text_fn)
if language == "all":
self.languages = XnliProcessor.supported_languages
elif language not in XnliProcessor.supported_languages:
raise ValueError("language %s is not supported for XNLI task." % language)
else:
self.languages = [language]
def get_train_examples(self, data_dir):
"""See base class."""
lines = []
for language in self.languages:
# Skips the header.
lines.extend(
self._read_tsv(
os.path.join(data_dir, "multinli",
"multinli.train.%s.tsv" % language))[1:])
examples = []
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
if label == self.process_text_fn("contradictory"):
label = self.process_text_fn("contradiction")
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = "dev-%d" % i
text_a = self.process_text_fn(line[6])
text_b = self.process_text_fn(line[7])
label = self.process_text_fn(line[1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
for i, line in enumerate(lines):
if i == 0:
continue
guid = "test-%d" % i
language = self.process_text_fn(line[0])
text_a = self.process_text_fn(line[6])
text_b = self.process_text_fn(line[7])
label = self.process_text_fn(line[1])
examples_by_lang[language].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XNLI"
class XtremePawsxProcessor(DataProcessor):
"""Processor for the XTREME PAWS-X data set."""
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
def __init__(self,
process_text_fn=tokenization.convert_to_unicode,
translated_data_dir=None,
only_use_en_dev=True):
"""See base class.
Args:
process_text_fn: See base class.
translated_data_dir: If specified, will also include translated data in
the training and testing data.
only_use_en_dev: If True, only use english dev data. Otherwise, use dev
data from all languages.
"""
super(XtremePawsxProcessor, self).__init__(process_text_fn)
self.translated_data_dir = translated_data_dir
self.only_use_en_dev = only_use_en_dev
def get_train_examples(self, data_dir):
"""See base class."""
examples = []
if self.translated_data_dir is None:
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
else:
for lang in self.supported_languages:
lines = self._read_tsv(
os.path.join(self.translated_data_dir, "translate-train",
f"en-{lang}-translated.tsv"))
for i, line in enumerate(lines):
guid = f"train-{lang}-{i}"
text_a = self.process_text_fn(line[2])
text_b = self.process_text_fn(line[3])
label = self.process_text_fn(line[4])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
examples = []
if self.only_use_en_dev:
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
for i, line in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
else:
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
for i, line in enumerate(lines):
guid = f"dev-{lang}-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {}
for lang in self.supported_languages:
examples_by_lang[lang] = []
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
for i, line in enumerate(lines):
guid = f"test-{lang}-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = "0"
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
if self.translated_data_dir is not None:
for lang in self.supported_languages:
if lang == "en":
continue
examples_by_lang[f"{lang}-en"] = []
lines = self._read_tsv(
os.path.join(self.translated_data_dir, "translate-test",
f"test-{lang}-en-translated.tsv"))
for i, line in enumerate(lines):
guid = f"test-{lang}-en-{i}"
text_a = self.process_text_fn(line[2])
text_b = self.process_text_fn(line[3])
label = "0"
examples_by_lang[f"{lang}-en"].append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-PAWS-X"
class XtremeXnliProcessor(DataProcessor):
"""Processor for the XTREME XNLI data set."""
supported_languages = [
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
"ur", "vi", "zh"
]
def __init__(self,
process_text_fn=tokenization.convert_to_unicode,
translated_data_dir=None,
only_use_en_dev=True):
"""See base class.
Args:
process_text_fn: See base class.
translated_data_dir: If specified, will also include translated data in
the training data.
only_use_en_dev: If True, only use english dev data. Otherwise, use dev
data from all languages.
"""
super(XtremeXnliProcessor, self).__init__(process_text_fn)
self.translated_data_dir = translated_data_dir
self.only_use_en_dev = only_use_en_dev
def get_train_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
examples = []
if self.translated_data_dir is None:
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
if label == self.process_text_fn("contradictory"):
label = self.process_text_fn("contradiction")
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
else:
for lang in self.supported_languages:
lines = self._read_tsv(
os.path.join(self.translated_data_dir, "translate-train",
f"en-{lang}-translated.tsv"))
for i, line in enumerate(lines):
guid = f"train-{lang}-{i}"
text_a = self.process_text_fn(line[2])
text_b = self.process_text_fn(line[3])
label = self.process_text_fn(line[4])
if label == self.process_text_fn("contradictory"):
label = self.process_text_fn("contradiction")
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
examples = []
if self.only_use_en_dev:
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
for i, line in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
else:
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
for i, line in enumerate(lines):
guid = f"dev-{lang}-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
if label == self.process_text_fn("contradictory"):
label = self.process_text_fn("contradiction")
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {}
for lang in self.supported_languages:
examples_by_lang[lang] = []
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
for i, line in enumerate(lines):
guid = f"test-{lang}-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = "contradiction"
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
if self.translated_data_dir is not None:
for lang in self.supported_languages:
if lang == "en":
continue
examples_by_lang[f"{lang}-en"] = []
lines = self._read_tsv(
os.path.join(self.translated_data_dir, "translate-test",
f"test-{lang}-en-translated.tsv"))
for i, line in enumerate(lines):
guid = f"test-{lang}-en-{i}"
text_a = self.process_text_fn(line[2])
text_b = self.process_text_fn(line[3])
label = "contradiction"
examples_by_lang[f"{lang}-en"].append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-XNLI"
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`."""
label_map = {}
if label_list:
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
seg_id_a = 0
seg_id_b = 1
seg_id_cls = 0
seg_id_pad = 0
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(seg_id_cls)
for token in tokens_a:
tokens.append(token)
segment_ids.append(seg_id_a)
tokens.append("[SEP]")
segment_ids.append(seg_id_a)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(seg_id_b)
tokens.append("[SEP]")
segment_ids.append(seg_id_b)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(seg_id_pad)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label] if label_map else example.label
if ex_index < 5:
logging.info("*** Example ***")
logging.info("guid: %s", (example.guid))
logging.info("tokens: %s",
" ".join([tokenization.printable_text(x) for x in tokens]))
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
logging.info("label: %s (id = %s)", example.label, str(label_id))
logging.info("weight: %s", example.weight)
logging.info("example_id: %s", example.example_id)
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True,
weight=example.weight,
example_id=example.example_id)
return feature
class AXgProcessor(DataProcessor):
"""Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "AXg"
def _create_examples(self, lines, set_type):
"""Creates examples for the training/dev/test sets."""
examples = []
for line in lines:
guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
text_a = self.process_text_fn(line["premise"])
text_b = self.process_text_fn(line["hypothesis"])
label = self.process_text_fn(line["label"])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class BoolQProcessor(DefaultGLUEDataProcessor):
"""Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""
def get_labels(self):
"""See base class."""
return ["True", "False"]
@staticmethod
def get_processor_name():
"""See base class."""
return "BoolQ"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"super_glue/boolq", split=set_type, try_gcs=True).as_numpy_iterator()
examples = []
for example in dataset:
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
text_a = self.process_text_fn(example["question"])
text_b = self.process_text_fn(example["passage"])
label = "False"
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class CBProcessor(DefaultGLUEDataProcessor):
"""Processor for the CB dataset (SuperGLUE diagnostics dataset)."""
def get_labels(self):
"""See base class."""
return ["entailment", "neutral", "contradiction"]
@staticmethod
def get_processor_name():
"""See base class."""
return "CB"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"super_glue/cb", split=set_type, try_gcs=True).as_numpy_iterator()
examples = []
for example in dataset:
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
text_a = self.process_text_fn(example["premise"])
text_b = self.process_text_fn(example["hypothesis"])
label = "entailment"
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class SuperGLUERTEProcessor(DefaultGLUEDataProcessor):
"""Processor for the RTE dataset (SuperGLUE version)."""
def get_labels(self):
"""See base class."""
# All datasets are converted to 2-class split, where for 3-class datasets we
# collapse neutral and contradiction into not_entailment.
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "RTESuperGLUE"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
examples = []
dataset = tfds.load(
"super_glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
for example in dataset:
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
text_a = self.process_text_fn(example["premise"])
text_b = self.process_text_fn(example["hypothesis"])
label = "entailment"
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class WiCInputExample(InputExample):
"""Processor for the WiC dataset (SuperGLUE version)."""
def __init__(self,
guid,
text_a,
text_b=None,
label=None,
word=None,
weight=None,
example_id=None):
"""A single training/test example for simple seq regression/classification."""
super(WiCInputExample, self).__init__(guid, text_a, text_b, label, weight,
example_id)
self.word = word
class WiCProcessor(DefaultGLUEDataProcessor):
"""Processor for the RTE dataset (SuperGLUE version)."""
def get_labels(self):
"""Not used."""
return []
@staticmethod
def get_processor_name():
"""See base class."""
return "RTESuperGLUE"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
examples = []
dataset = tfds.load(
"super_glue/wic", split=set_type, try_gcs=True).as_numpy_iterator()
for example in dataset:
guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
word = self.process_text_fn(example["word"])
label = 0
if set_type != "test":
label = example["label"]
examples.append(
WiCInputExample(
guid=guid, text_a=text_a, text_b=text_b, word=word, label=label))
return examples
def featurize_example(self, ex_index, example, label_list, max_seq_length,
tokenizer):
"""Here we concate sentence1, sentence2, word together with [SEP] tokens."""
del label_list
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = tokenizer.tokenize(example.text_b)
tokens_word = tokenizer.tokenize(example.word)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP], [SEP] with "- 4"
# Here we only pop out the first two sentence tokens.
_truncate_seq_pair(tokens_a, tokens_b,
max_seq_length - 4 - len(tokens_word))
seg_id_a = 0
seg_id_b = 1
seg_id_c = 2
seg_id_cls = 0
seg_id_pad = 0
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(seg_id_cls)
for token in tokens_a:
tokens.append(token)
segment_ids.append(seg_id_a)
tokens.append("[SEP]")
segment_ids.append(seg_id_a)
for token in tokens_b:
tokens.append(token)
segment_ids.append(seg_id_b)
tokens.append("[SEP]")
segment_ids.append(seg_id_b)
for token in tokens_word:
tokens.append(token)
segment_ids.append(seg_id_c)
tokens.append("[SEP]")
segment_ids.append(seg_id_c)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(seg_id_pad)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = example.label
if ex_index < 5:
logging.info("*** Example ***")
logging.info("guid: %s", (example.guid))
logging.info("tokens: %s",
" ".join([tokenization.printable_text(x) for x in tokens]))
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
logging.info("label: %s (id = %s)", example.label, str(label_id))
logging.info("weight: %s", example.weight)
logging.info("example_id: %s", example.example_id)
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True,
weight=example.weight,
example_id=example.example_id)
return feature
def file_based_convert_examples_to_features(examples,
label_list,
max_seq_length,
tokenizer,
output_file,
label_type=None,
featurize_fn=None):
"""Convert a set of `InputExample`s to a TFRecord file."""
tf.io.gfile.makedirs(os.path.dirname(output_file))
writer = tf.io.TFRecordWriter(output_file)
for ex_index, example in enumerate(examples):
if ex_index % 10000 == 0:
logging.info("Writing example %d of %d", ex_index, len(examples))
if featurize_fn:
feature = featurize_fn(ex_index, example, label_list, max_seq_length,
tokenizer)
else:
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if label_type is not None and label_type == float:
features["label_ids"] = create_float_feature([feature.label_id])
elif feature.label_id is not None:
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
if feature.weight is not None:
features["weight"] = create_float_feature([feature.weight])
if feature.example_id is not None:
features["example_id"] = create_int_feature([feature.example_id])
else:
features["example_id"] = create_int_feature([ex_index])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def generate_tf_record_from_data_file(processor,
data_dir,
tokenizer,
train_data_output_path=None,
eval_data_output_path=None,
test_data_output_path=None,
max_seq_length=128):
"""Generates and saves training data into a tf record file.
Args:
processor: Input processor object to be used for generating data. Subclass
of `DataProcessor`.
data_dir: Directory that contains train/eval/test data to process.
tokenizer: The tokenizer to be applied on the data.
train_data_output_path: Output to which processed tf record for training
will be saved.
eval_data_output_path: Output to which processed tf record for evaluation
will be saved.
test_data_output_path: Output to which processed tf record for testing
will be saved. Must be a pattern template with {} if processor has
language specific test data.
max_seq_length: Maximum sequence length of the to be generated
training/eval data.
Returns:
A dictionary containing input meta data.
"""
assert train_data_output_path or eval_data_output_path
label_list = processor.get_labels()
label_type = getattr(processor, "label_type", None)
is_regression = getattr(processor, "is_regression", False)
has_sample_weights = getattr(processor, "weight_key", False)
num_training_data = 0
if train_data_output_path:
train_input_data_examples = processor.get_train_examples(data_dir)
file_based_convert_examples_to_features(train_input_data_examples,
label_list, max_seq_length,
tokenizer, train_data_output_path,
label_type,
processor.featurize_example)
num_training_data = len(train_input_data_examples)
if eval_data_output_path:
eval_input_data_examples = processor.get_dev_examples(data_dir)
file_based_convert_examples_to_features(eval_input_data_examples,
label_list, max_seq_length,
tokenizer, eval_data_output_path,
label_type,
processor.featurize_example)
meta_data = {
"processor_type": processor.get_processor_name(),
"train_data_size": num_training_data,
"max_seq_length": max_seq_length,
}
if test_data_output_path:
test_input_data_examples = processor.get_test_examples(data_dir)
if isinstance(test_input_data_examples, dict):
for language, examples in test_input_data_examples.items():
file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer,
test_data_output_path.format(language), label_type,
processor.featurize_example)
meta_data["test_{}_data_size".format(language)] = len(examples)
else:
file_based_convert_examples_to_features(test_input_data_examples,
label_list, max_seq_length,
tokenizer, test_data_output_path,
label_type,
processor.featurize_example)
meta_data["test_data_size"] = len(test_input_data_examples)
if is_regression:
meta_data["task_type"] = "bert_regression"
meta_data["label_type"] = {int: "int", float: "float"}[label_type]
else:
meta_data["task_type"] = "bert_classification"
meta_data["num_labels"] = len(processor.get_labels())
if has_sample_weights:
meta_data["has_sample_weights"] = True
if eval_data_output_path:
meta_data["eval_data_size"] = len(eval_input_data_examples)
return meta_data