ISCO-code-predictor-api / create_finetuning_data.py
Pradeep Kumar
Upload 33 files
f18e71f verified
raw
history blame
17.1 kB
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning task dataset generator."""
import functools
import json
import os
# Import libraries
from absl import app
from absl import flags
import tensorflow as tf, tf_keras
from official.nlp.data import classifier_data_lib
from official.nlp.data import sentence_retrieval_lib
# word-piece tokenizer based squad_lib
from official.nlp.data import squad_lib as squad_lib_wp
# sentence-piece tokenizer based squad_lib
from official.nlp.data import squad_lib_sp
from official.nlp.data import tagging_data_lib
from official.nlp.tools import tokenization
FLAGS = flags.FLAGS
flags.DEFINE_enum(
"fine_tuning_task_type", "classification",
["classification", "regression", "squad", "retrieval", "tagging"],
"The name of the BERT fine tuning task for which data "
"will be generated.")
# BERT classification specific flags.
flags.DEFINE_string(
"input_data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_enum(
"classification_task_name", "MNLI", [
"AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE",
"SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X",
"AX-g", "SUPERGLUE-RTE", "CB", "BoolQ", "WIC"
], "The name of the task to train BERT classifier. The "
"difference between XTREME-XNLI and XNLI is: 1. the format "
"of input tsv files; 2. the dev set for XTREME is english "
"only and for XNLI is all languages combined. Same for "
"PAWS-X.")
# MNLI task-specific flag.
flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"],
"The type of MNLI dataset.")
# XNLI task-specific flag.
flags.DEFINE_string(
"xnli_language", "en",
"Language of training data for XNLI task. If the value is 'all', the data "
"of all languages will be used for training.")
# PAWS-X task-specific flag.
flags.DEFINE_string(
"pawsx_language", "en",
"Language of training data for PAWS-X task. If the value is 'all', the data "
"of all languages will be used for training.")
# XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli.
flags.DEFINE_string(
"translated_input_data_dir", None,
"The translated input data dir. Should contain the .tsv files (or other "
"data files) for the task.")
# Retrieval task-specific flags.
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
"The name of sentence retrieval task for scoring")
# Tagging task-specific flags.
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"],
"The name of BERT tagging (token classification) task.")
flags.DEFINE_bool("tagging_only_use_en_train", True,
"Whether only use english training data in tagging.")
# BERT Squad task-specific flags.
flags.DEFINE_string(
"squad_data_file", None,
"The input data file in for generating training data for BERT squad task.")
flags.DEFINE_string(
"translated_squad_data_folder", None,
"The translated data folder for generating training data for BERT squad "
"task.")
flags.DEFINE_integer(
"doc_stride", 128,
"When splitting up a long document into chunks, how much stride to "
"take between chunks.")
flags.DEFINE_integer(
"max_query_length", 64,
"The maximum number of tokens for the question. Questions longer than "
"this will be truncated to this length.")
flags.DEFINE_bool(
"version_2_with_negative", False,
"If true, the SQuAD examples contain some that do not have an answer.")
flags.DEFINE_bool(
"xlnet_format", False,
"If true, then data will be preprocessed in a paragraph, query, class order"
" instead of the BERT-style class, paragraph, query order.")
# XTREME specific flags.
flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.")
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"train_data_output_path", None,
"The path in which generated training input data will be written as tf"
" records.")
flags.DEFINE_string(
"eval_data_output_path", None,
"The path in which generated evaluation input data will be written as tf"
" records.")
flags.DEFINE_string(
"test_data_output_path", None,
"The path in which generated test input data will be written as tf"
" records. If None, do not generate test data. Must be a pattern template"
" as test_{}.tfrecords if processor has language specific test data.")
flags.DEFINE_string("meta_data_file_path", None,
"The path in which input meta data will be written.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_string("sp_model_file", "",
"The path to the model used by sentence piece tokenizer.")
flags.DEFINE_enum(
"tokenization", "WordPiece", ["WordPiece", "SentencePiece"],
"Specifies the tokenizer implementation, i.e., whether to use WordPiece "
"or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, "
"while ALBERT uses SentencePiece tokenizer.")
flags.DEFINE_string(
"tfds_params", "", "Comma-separated list of TFDS parameter assignments for "
"generic classfication data import (for more details "
"see the TfdsProcessor class documentation).")
def generate_classifier_dataset():
"""Generates classifier dataset and returns input meta data."""
if FLAGS.classification_task_name in [
"COLA",
"WNLI",
"SST-2",
"MRPC",
"QQP",
"STS-B",
"MNLI",
"QNLI",
"RTE",
"AX",
"SUPERGLUE-RTE",
"CB",
"BoolQ",
"WIC",
]:
assert not FLAGS.input_data_dir or FLAGS.tfds_params
else:
assert (FLAGS.input_data_dir and FLAGS.classification_task_name or
FLAGS.tfds_params)
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenization == "SentencePiece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
if FLAGS.tfds_params:
processor = classifier_data_lib.TfdsProcessor(
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
else:
processors = {
"ax":
classifier_data_lib.AxProcessor,
"cola":
classifier_data_lib.ColaProcessor,
"imdb":
classifier_data_lib.ImdbProcessor,
"mnli":
functools.partial(
classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type),
"mrpc":
classifier_data_lib.MrpcProcessor,
"qnli":
classifier_data_lib.QnliProcessor,
"qqp":
classifier_data_lib.QqpProcessor,
"rte":
classifier_data_lib.RteProcessor,
"sst-2":
classifier_data_lib.SstProcessor,
"sts-b":
classifier_data_lib.StsBProcessor,
"xnli":
functools.partial(
classifier_data_lib.XnliProcessor,
language=FLAGS.xnli_language),
"paws-x":
functools.partial(
classifier_data_lib.PawsxProcessor,
language=FLAGS.pawsx_language),
"wnli":
classifier_data_lib.WnliProcessor,
"xtreme-xnli":
functools.partial(
classifier_data_lib.XtremeXnliProcessor,
translated_data_dir=FLAGS.translated_input_data_dir,
only_use_en_dev=FLAGS.only_use_en_dev),
"xtreme-paws-x":
functools.partial(
classifier_data_lib.XtremePawsxProcessor,
translated_data_dir=FLAGS.translated_input_data_dir,
only_use_en_dev=FLAGS.only_use_en_dev),
"ax-g":
classifier_data_lib.AXgProcessor,
"superglue-rte":
classifier_data_lib.SuperGLUERTEProcessor,
"cb":
classifier_data_lib.CBProcessor,
"boolq":
classifier_data_lib.BoolQProcessor,
"wic":
classifier_data_lib.WnliProcessor,
}
task_name = FLAGS.classification_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name,))
processor = processors[task_name](process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
FLAGS.input_data_dir,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
def generate_regression_dataset():
"""Generates regression dataset and returns input meta data."""
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenization == "SentencePiece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
if FLAGS.tfds_params:
processor = classifier_data_lib.TfdsProcessor(
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
else:
raise ValueError("No data processor found for the given regression task.")
def generate_squad_dataset():
"""Generates squad training dataset and returns input meta data."""
assert FLAGS.squad_data_file
if FLAGS.tokenization == "WordPiece":
return squad_lib_wp.generate_tf_record_from_json_file(
input_file_path=FLAGS.squad_data_file,
vocab_file_path=FLAGS.vocab_file,
output_path=FLAGS.train_data_output_path,
translated_input_folder=FLAGS.translated_squad_data_folder,
max_seq_length=FLAGS.max_seq_length,
do_lower_case=FLAGS.do_lower_case,
max_query_length=FLAGS.max_query_length,
doc_stride=FLAGS.doc_stride,
version_2_with_negative=FLAGS.version_2_with_negative,
xlnet_format=FLAGS.xlnet_format)
else:
assert FLAGS.tokenization == "SentencePiece"
return squad_lib_sp.generate_tf_record_from_json_file(
input_file_path=FLAGS.squad_data_file,
sp_model_file=FLAGS.sp_model_file,
output_path=FLAGS.train_data_output_path,
translated_input_folder=FLAGS.translated_squad_data_folder,
max_seq_length=FLAGS.max_seq_length,
do_lower_case=FLAGS.do_lower_case,
max_query_length=FLAGS.max_query_length,
doc_stride=FLAGS.doc_stride,
xlnet_format=FLAGS.xlnet_format,
version_2_with_negative=FLAGS.version_2_with_negative)
def generate_retrieval_dataset():
"""Generate retrieval test and dev dataset and returns input meta data."""
assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenization == "SentencePiece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
processors = {
"bucc": sentence_retrieval_lib.BuccProcessor,
"tatoeba": sentence_retrieval_lib.TatoebaProcessor,
}
task_name = FLAGS.retrieval_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % task_name)
processor = processors[task_name](process_text_fn=processor_text_fn)
return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path,
FLAGS.test_data_output_path, FLAGS.max_seq_length)
def generate_tagging_dataset():
"""Generates tagging dataset."""
processors = {
"panx":
functools.partial(
tagging_data_lib.PanxProcessor,
only_use_en_train=FLAGS.tagging_only_use_en_train,
only_use_en_dev=FLAGS.only_use_en_dev),
"udpos":
functools.partial(
tagging_data_lib.UdposProcessor,
only_use_en_train=FLAGS.tagging_only_use_en_train,
only_use_en_dev=FLAGS.only_use_en_dev),
}
task_name = FLAGS.tagging_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % task_name)
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
elif FLAGS.tokenization == "SentencePiece":
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
else:
raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization)
processor = processors[task_name]()
return tagging_data_lib.generate_tf_record_from_data_file(
processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length,
FLAGS.train_data_output_path, FLAGS.eval_data_output_path,
FLAGS.test_data_output_path, processor_text_fn)
def main(_):
if FLAGS.tokenization == "WordPiece":
if not FLAGS.vocab_file:
raise ValueError(
"FLAG vocab_file for word-piece tokenizer is not specified.")
else:
assert FLAGS.tokenization == "SentencePiece"
if not FLAGS.sp_model_file:
raise ValueError(
"FLAG sp_model_file for sentence-piece tokenizer is not specified.")
if FLAGS.fine_tuning_task_type != "retrieval":
flags.mark_flag_as_required("train_data_output_path")
if FLAGS.fine_tuning_task_type == "classification":
input_meta_data = generate_classifier_dataset()
elif FLAGS.fine_tuning_task_type == "regression":
input_meta_data = generate_regression_dataset()
elif FLAGS.fine_tuning_task_type == "retrieval":
input_meta_data = generate_retrieval_dataset()
elif FLAGS.fine_tuning_task_type == "squad":
input_meta_data = generate_squad_dataset()
else:
assert FLAGS.fine_tuning_task_type == "tagging"
input_meta_data = generate_tagging_dataset()
tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
writer.write(json.dumps(input_meta_data, indent=4) + "\n")
if __name__ == "__main__":
flags.mark_flag_as_required("meta_data_file_path")
app.run(main)