Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""BERT finetuning task dataset generator.""" | |
import functools | |
import json | |
import os | |
# Import libraries | |
from absl import app | |
from absl import flags | |
import tensorflow as tf, tf_keras | |
from official.nlp.data import classifier_data_lib | |
from official.nlp.data import sentence_retrieval_lib | |
# word-piece tokenizer based squad_lib | |
from official.nlp.data import squad_lib as squad_lib_wp | |
# sentence-piece tokenizer based squad_lib | |
from official.nlp.data import squad_lib_sp | |
from official.nlp.data import tagging_data_lib | |
from official.nlp.tools import tokenization | |
FLAGS = flags.FLAGS | |
flags.DEFINE_enum( | |
"fine_tuning_task_type", "classification", | |
["classification", "regression", "squad", "retrieval", "tagging"], | |
"The name of the BERT fine tuning task for which data " | |
"will be generated.") | |
# BERT classification specific flags. | |
flags.DEFINE_string( | |
"input_data_dir", None, | |
"The input data dir. Should contain the .tsv files (or other data files) " | |
"for the task.") | |
flags.DEFINE_enum( | |
"classification_task_name", "MNLI", [ | |
"AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE", | |
"SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X", | |
"AX-g", "SUPERGLUE-RTE", "CB", "BoolQ", "WIC" | |
], "The name of the task to train BERT classifier. The " | |
"difference between XTREME-XNLI and XNLI is: 1. the format " | |
"of input tsv files; 2. the dev set for XTREME is english " | |
"only and for XNLI is all languages combined. Same for " | |
"PAWS-X.") | |
# MNLI task-specific flag. | |
flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"], | |
"The type of MNLI dataset.") | |
# XNLI task-specific flag. | |
flags.DEFINE_string( | |
"xnli_language", "en", | |
"Language of training data for XNLI task. If the value is 'all', the data " | |
"of all languages will be used for training.") | |
# PAWS-X task-specific flag. | |
flags.DEFINE_string( | |
"pawsx_language", "en", | |
"Language of training data for PAWS-X task. If the value is 'all', the data " | |
"of all languages will be used for training.") | |
# XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli. | |
flags.DEFINE_string( | |
"translated_input_data_dir", None, | |
"The translated input data dir. Should contain the .tsv files (or other " | |
"data files) for the task.") | |
# Retrieval task-specific flags. | |
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"], | |
"The name of sentence retrieval task for scoring") | |
# Tagging task-specific flags. | |
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"], | |
"The name of BERT tagging (token classification) task.") | |
flags.DEFINE_bool("tagging_only_use_en_train", True, | |
"Whether only use english training data in tagging.") | |
# BERT Squad task-specific flags. | |
flags.DEFINE_string( | |
"squad_data_file", None, | |
"The input data file in for generating training data for BERT squad task.") | |
flags.DEFINE_string( | |
"translated_squad_data_folder", None, | |
"The translated data folder for generating training data for BERT squad " | |
"task.") | |
flags.DEFINE_integer( | |
"doc_stride", 128, | |
"When splitting up a long document into chunks, how much stride to " | |
"take between chunks.") | |
flags.DEFINE_integer( | |
"max_query_length", 64, | |
"The maximum number of tokens for the question. Questions longer than " | |
"this will be truncated to this length.") | |
flags.DEFINE_bool( | |
"version_2_with_negative", False, | |
"If true, the SQuAD examples contain some that do not have an answer.") | |
flags.DEFINE_bool( | |
"xlnet_format", False, | |
"If true, then data will be preprocessed in a paragraph, query, class order" | |
" instead of the BERT-style class, paragraph, query order.") | |
# XTREME specific flags. | |
flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.") | |
# Shared flags across BERT fine-tuning tasks. | |
flags.DEFINE_string("vocab_file", None, | |
"The vocabulary file that the BERT model was trained on.") | |
flags.DEFINE_string( | |
"train_data_output_path", None, | |
"The path in which generated training input data will be written as tf" | |
" records.") | |
flags.DEFINE_string( | |
"eval_data_output_path", None, | |
"The path in which generated evaluation input data will be written as tf" | |
" records.") | |
flags.DEFINE_string( | |
"test_data_output_path", None, | |
"The path in which generated test input data will be written as tf" | |
" records. If None, do not generate test data. Must be a pattern template" | |
" as test_{}.tfrecords if processor has language specific test data.") | |
flags.DEFINE_string("meta_data_file_path", None, | |
"The path in which input meta data will be written.") | |
flags.DEFINE_bool( | |
"do_lower_case", True, | |
"Whether to lower case the input text. Should be True for uncased " | |
"models and False for cased models.") | |
flags.DEFINE_integer( | |
"max_seq_length", 128, | |
"The maximum total input sequence length after WordPiece tokenization. " | |
"Sequences longer than this will be truncated, and sequences shorter " | |
"than this will be padded.") | |
flags.DEFINE_string("sp_model_file", "", | |
"The path to the model used by sentence piece tokenizer.") | |
flags.DEFINE_enum( | |
"tokenization", "WordPiece", ["WordPiece", "SentencePiece"], | |
"Specifies the tokenizer implementation, i.e., whether to use WordPiece " | |
"or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, " | |
"while ALBERT uses SentencePiece tokenizer.") | |
flags.DEFINE_string( | |
"tfds_params", "", "Comma-separated list of TFDS parameter assignments for " | |
"generic classfication data import (for more details " | |
"see the TfdsProcessor class documentation).") | |
def generate_classifier_dataset(): | |
"""Generates classifier dataset and returns input meta data.""" | |
if FLAGS.classification_task_name in [ | |
"COLA", | |
"WNLI", | |
"SST-2", | |
"MRPC", | |
"QQP", | |
"STS-B", | |
"MNLI", | |
"QNLI", | |
"RTE", | |
"AX", | |
"SUPERGLUE-RTE", | |
"CB", | |
"BoolQ", | |
"WIC", | |
]: | |
assert not FLAGS.input_data_dir or FLAGS.tfds_params | |
else: | |
assert (FLAGS.input_data_dir and FLAGS.classification_task_name or | |
FLAGS.tfds_params) | |
if FLAGS.tokenization == "WordPiece": | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
processor_text_fn = tokenization.convert_to_unicode | |
else: | |
assert FLAGS.tokenization == "SentencePiece" | |
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) | |
processor_text_fn = functools.partial( | |
tokenization.preprocess_text, lower=FLAGS.do_lower_case) | |
if FLAGS.tfds_params: | |
processor = classifier_data_lib.TfdsProcessor( | |
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn) | |
return classifier_data_lib.generate_tf_record_from_data_file( | |
processor, | |
None, | |
tokenizer, | |
train_data_output_path=FLAGS.train_data_output_path, | |
eval_data_output_path=FLAGS.eval_data_output_path, | |
test_data_output_path=FLAGS.test_data_output_path, | |
max_seq_length=FLAGS.max_seq_length) | |
else: | |
processors = { | |
"ax": | |
classifier_data_lib.AxProcessor, | |
"cola": | |
classifier_data_lib.ColaProcessor, | |
"imdb": | |
classifier_data_lib.ImdbProcessor, | |
"mnli": | |
functools.partial( | |
classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type), | |
"mrpc": | |
classifier_data_lib.MrpcProcessor, | |
"qnli": | |
classifier_data_lib.QnliProcessor, | |
"qqp": | |
classifier_data_lib.QqpProcessor, | |
"rte": | |
classifier_data_lib.RteProcessor, | |
"sst-2": | |
classifier_data_lib.SstProcessor, | |
"sts-b": | |
classifier_data_lib.StsBProcessor, | |
"xnli": | |
functools.partial( | |
classifier_data_lib.XnliProcessor, | |
language=FLAGS.xnli_language), | |
"paws-x": | |
functools.partial( | |
classifier_data_lib.PawsxProcessor, | |
language=FLAGS.pawsx_language), | |
"wnli": | |
classifier_data_lib.WnliProcessor, | |
"xtreme-xnli": | |
functools.partial( | |
classifier_data_lib.XtremeXnliProcessor, | |
translated_data_dir=FLAGS.translated_input_data_dir, | |
only_use_en_dev=FLAGS.only_use_en_dev), | |
"xtreme-paws-x": | |
functools.partial( | |
classifier_data_lib.XtremePawsxProcessor, | |
translated_data_dir=FLAGS.translated_input_data_dir, | |
only_use_en_dev=FLAGS.only_use_en_dev), | |
"ax-g": | |
classifier_data_lib.AXgProcessor, | |
"superglue-rte": | |
classifier_data_lib.SuperGLUERTEProcessor, | |
"cb": | |
classifier_data_lib.CBProcessor, | |
"boolq": | |
classifier_data_lib.BoolQProcessor, | |
"wic": | |
classifier_data_lib.WnliProcessor, | |
} | |
task_name = FLAGS.classification_task_name.lower() | |
if task_name not in processors: | |
raise ValueError("Task not found: %s" % (task_name,)) | |
processor = processors[task_name](process_text_fn=processor_text_fn) | |
return classifier_data_lib.generate_tf_record_from_data_file( | |
processor, | |
FLAGS.input_data_dir, | |
tokenizer, | |
train_data_output_path=FLAGS.train_data_output_path, | |
eval_data_output_path=FLAGS.eval_data_output_path, | |
test_data_output_path=FLAGS.test_data_output_path, | |
max_seq_length=FLAGS.max_seq_length) | |
def generate_regression_dataset(): | |
"""Generates regression dataset and returns input meta data.""" | |
if FLAGS.tokenization == "WordPiece": | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
processor_text_fn = tokenization.convert_to_unicode | |
else: | |
assert FLAGS.tokenization == "SentencePiece" | |
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) | |
processor_text_fn = functools.partial( | |
tokenization.preprocess_text, lower=FLAGS.do_lower_case) | |
if FLAGS.tfds_params: | |
processor = classifier_data_lib.TfdsProcessor( | |
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn) | |
return classifier_data_lib.generate_tf_record_from_data_file( | |
processor, | |
None, | |
tokenizer, | |
train_data_output_path=FLAGS.train_data_output_path, | |
eval_data_output_path=FLAGS.eval_data_output_path, | |
test_data_output_path=FLAGS.test_data_output_path, | |
max_seq_length=FLAGS.max_seq_length) | |
else: | |
raise ValueError("No data processor found for the given regression task.") | |
def generate_squad_dataset(): | |
"""Generates squad training dataset and returns input meta data.""" | |
assert FLAGS.squad_data_file | |
if FLAGS.tokenization == "WordPiece": | |
return squad_lib_wp.generate_tf_record_from_json_file( | |
input_file_path=FLAGS.squad_data_file, | |
vocab_file_path=FLAGS.vocab_file, | |
output_path=FLAGS.train_data_output_path, | |
translated_input_folder=FLAGS.translated_squad_data_folder, | |
max_seq_length=FLAGS.max_seq_length, | |
do_lower_case=FLAGS.do_lower_case, | |
max_query_length=FLAGS.max_query_length, | |
doc_stride=FLAGS.doc_stride, | |
version_2_with_negative=FLAGS.version_2_with_negative, | |
xlnet_format=FLAGS.xlnet_format) | |
else: | |
assert FLAGS.tokenization == "SentencePiece" | |
return squad_lib_sp.generate_tf_record_from_json_file( | |
input_file_path=FLAGS.squad_data_file, | |
sp_model_file=FLAGS.sp_model_file, | |
output_path=FLAGS.train_data_output_path, | |
translated_input_folder=FLAGS.translated_squad_data_folder, | |
max_seq_length=FLAGS.max_seq_length, | |
do_lower_case=FLAGS.do_lower_case, | |
max_query_length=FLAGS.max_query_length, | |
doc_stride=FLAGS.doc_stride, | |
xlnet_format=FLAGS.xlnet_format, | |
version_2_with_negative=FLAGS.version_2_with_negative) | |
def generate_retrieval_dataset(): | |
"""Generate retrieval test and dev dataset and returns input meta data.""" | |
assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name) | |
if FLAGS.tokenization == "WordPiece": | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
processor_text_fn = tokenization.convert_to_unicode | |
else: | |
assert FLAGS.tokenization == "SentencePiece" | |
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) | |
processor_text_fn = functools.partial( | |
tokenization.preprocess_text, lower=FLAGS.do_lower_case) | |
processors = { | |
"bucc": sentence_retrieval_lib.BuccProcessor, | |
"tatoeba": sentence_retrieval_lib.TatoebaProcessor, | |
} | |
task_name = FLAGS.retrieval_task_name.lower() | |
if task_name not in processors: | |
raise ValueError("Task not found: %s" % task_name) | |
processor = processors[task_name](process_text_fn=processor_text_fn) | |
return sentence_retrieval_lib.generate_sentence_retrevial_tf_record( | |
processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path, | |
FLAGS.test_data_output_path, FLAGS.max_seq_length) | |
def generate_tagging_dataset(): | |
"""Generates tagging dataset.""" | |
processors = { | |
"panx": | |
functools.partial( | |
tagging_data_lib.PanxProcessor, | |
only_use_en_train=FLAGS.tagging_only_use_en_train, | |
only_use_en_dev=FLAGS.only_use_en_dev), | |
"udpos": | |
functools.partial( | |
tagging_data_lib.UdposProcessor, | |
only_use_en_train=FLAGS.tagging_only_use_en_train, | |
only_use_en_dev=FLAGS.only_use_en_dev), | |
} | |
task_name = FLAGS.tagging_task_name.lower() | |
if task_name not in processors: | |
raise ValueError("Task not found: %s" % task_name) | |
if FLAGS.tokenization == "WordPiece": | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
processor_text_fn = tokenization.convert_to_unicode | |
elif FLAGS.tokenization == "SentencePiece": | |
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) | |
processor_text_fn = functools.partial( | |
tokenization.preprocess_text, lower=FLAGS.do_lower_case) | |
else: | |
raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization) | |
processor = processors[task_name]() | |
return tagging_data_lib.generate_tf_record_from_data_file( | |
processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length, | |
FLAGS.train_data_output_path, FLAGS.eval_data_output_path, | |
FLAGS.test_data_output_path, processor_text_fn) | |
def main(_): | |
if FLAGS.tokenization == "WordPiece": | |
if not FLAGS.vocab_file: | |
raise ValueError( | |
"FLAG vocab_file for word-piece tokenizer is not specified.") | |
else: | |
assert FLAGS.tokenization == "SentencePiece" | |
if not FLAGS.sp_model_file: | |
raise ValueError( | |
"FLAG sp_model_file for sentence-piece tokenizer is not specified.") | |
if FLAGS.fine_tuning_task_type != "retrieval": | |
flags.mark_flag_as_required("train_data_output_path") | |
if FLAGS.fine_tuning_task_type == "classification": | |
input_meta_data = generate_classifier_dataset() | |
elif FLAGS.fine_tuning_task_type == "regression": | |
input_meta_data = generate_regression_dataset() | |
elif FLAGS.fine_tuning_task_type == "retrieval": | |
input_meta_data = generate_retrieval_dataset() | |
elif FLAGS.fine_tuning_task_type == "squad": | |
input_meta_data = generate_squad_dataset() | |
else: | |
assert FLAGS.fine_tuning_task_type == "tagging" | |
input_meta_data = generate_tagging_dataset() | |
tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path)) | |
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer: | |
writer.write(json.dumps(input_meta_data, indent=4) + "\n") | |
if __name__ == "__main__": | |
flags.mark_flag_as_required("meta_data_file_path") | |
app.run(main) | |