ISCO-code-predictor-api / create_xlnet_pretraining_data.py
Pradeep Kumar
Upload 33 files
f18e71f verified
raw
history blame
24.9 kB
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Create LM TF examples for XLNet."""
import dataclasses
import json
import math
import os
import random
from typing import Iterable, Mapping, List, Optional, Tuple
import unicodedata
# Import libraries
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.tools import tokenization
special_symbols = {
"<unk>": 0,
"<s>": 1,
"</s>": 2,
"<cls>": 3,
"<sep>": 4,
"<pad>": 5,
"<mask>": 6,
"<eod>": 7,
"<eop>": 8,
}
FLAGS = flags.FLAGS
flags.DEFINE_integer("seq_length", 512,
help="Sequence length.")
flags.DEFINE_integer("reuse_length", 256,
help="Number of token that can be reused as memory. "
"Could be half of `seq_len`.")
flags.DEFINE_string("input_file", None,
"Input raw text file (or comma-separated list of files).")
flags.DEFINE_string(
"save_dir", None,
"Directory for saving processed data.")
flags.DEFINE_string("sp_model_file", "",
"The path to the model used by sentence piece tokenizer.")
flags.DEFINE_bool("use_eod_token", True,
"Whether or not to include EOD tokens.")
flags.DEFINE_bool("bi_data", True, "Whether or not to use bi-directional data.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("per_host_batch_size", 32, "Batch size per host.")
flags.DEFINE_integer("num_cores_per_host", 16,
"The number of (TPU) cores per host.")
flags.DEFINE_string("prefix", "", "Filename prefix.")
flags.DEFINE_string("suffix", "", "Filename suffix.")
flags.DEFINE_integer("task_id", None,
"The id of the current task.")
flags.DEFINE_integer("num_tasks", None,
"The total number of tasks.")
flags.DEFINE_integer("num_passes", 1, "The number of times to run the script.")
@dataclasses.dataclass
class TrainingInstance:
"""Representation of a single XLNet Pretraining instance."""
data: Iterable[int]
segment_ids: Iterable[int]
boundary_indices: Iterable[int]
label: int
def to_feature(self) -> Mapping[str, tf.train.Feature]:
feat = lambda x: tf.train.Feature(int64_list=tf.train.Int64List(value=x))
return dict(
input_word_ids=feat(self.data),
input_type_ids=feat(self.segment_ids),
boundary_indices=feat(self.boundary_indices),
label=feat([self.label]))
def to_example(self) -> tf.train.Example:
return tf.train.Example(
features=tf.train.Features(feature=self.to_feature()))
def __str__(self):
def seq_to_str(seq):
return " ".join([str(x) for x in seq])
s = ""
s += "tokens: %s\n" % seq_to_str(self.data)
s += "segment_ids: %s\n" % seq_to_str(self.segment_ids)
s += "boundary_indices: %s\n" % seq_to_str(self.boundary_indices)
s += "label: %s\n" % self.label
s += "\n"
return s
def __repr__(self):
return self.__str__()
def _preprocess_line(line: str, do_lower_case: bool = False) -> str:
"""Preprocesses an individual raw text line.
This function will:
- Remove extraneous spaces.
- Replace `` with ", and '' with ".
- Replaces accents.
- Applies lower casing.
Args:
line: The input line to preprocess.
do_lower_case: Whether or not to lower case the text.
Returns:
The preprocessed line.
"""
line = " ".join(line.split())
line = line.replace("``", "\"").replace("''", "\"")
# Replace accents.
line = unicodedata.normalize("NFKD", line)
line = "".join([c for c in line if not unicodedata.combining(c)])
if do_lower_case:
line = line.lower()
return line
def preprocess_and_tokenize_input_files(
input_files: Iterable[str],
tokenizer: tokenization.FullSentencePieceTokenizer,
use_eod: bool = True,
do_lower_case: bool = False,
log_example_freq: int = 100000) -> List[Tuple[np.array, np.array]]:
"""Preprocesses and encodes raw text from input files.
This function preprocesses raw text and encodes them into tokens using a
`SentencePieceModel` tokenization method. This also provides the sentence
indicator for each token.
Args:
input_files: The list of input file names.
tokenizer: The SentencePiece tokenizer that has the attribute `sp_model`.
use_eod: Whether or not to use an EOD indicator. If `False`, then EOD is
not included.
do_lower_case: Whether or not to apply lower casing during raw text
preprocessing.
log_example_freq: The optional field for how many lines to process before
emitting an info log.
Returns:
The preprocessed list. Each entry in the list is a tuple consisting of
the token IDs and the sentence IDs.
"""
all_data = []
eod_symbol = special_symbols["<eod>"]
total_number_of_lines = 0
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
for input_file in input_files:
line_count = 0
logging.info("Preprocessing %s", input_file)
all_tokens = []
all_sentence_ids = []
sentence_id = True
with tf.io.gfile.GFile(input_file, "rb") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line_count += 1
if line_count % log_example_freq == 0:
logging.info("Loading line %d", line_count)
line = line.strip()
if not line:
if use_eod:
token_ids = [eod_symbol]
sentence_id = not sentence_id
else:
continue
else:
preprocessed_line = _preprocess_line(
line=line, do_lower_case=do_lower_case)
token_ids = tokenization.encode_ids(
sp_model=tokenizer.sp_model, text=preprocessed_line)
all_tokens.extend(token_ids)
all_sentence_ids.extend([sentence_id] * len(token_ids))
sentence_id = not sentence_id
logging.info("Finished processing %s. Number of lines: %d",
input_file, line_count)
if line_count == 0:
continue
total_number_of_lines += line_count
all_tokens = np.array(all_tokens, dtype=np.int64)
all_sentence_ids = np.array(all_sentence_ids, dtype=bool)
all_data.append((all_tokens, all_sentence_ids))
logging.info("Completed text preprocessing. Total number of lines: %d",
total_number_of_lines)
return all_data
def _reshape_to_batch_dimensions(
tokens: np.array,
sentence_ids: np.array,
per_host_batch_size: int) -> Tuple[np.array, np.array]:
"""Truncates and reshapes input data with a batch major dimension.
Args:
tokens: The input token ids. This should have the same shape as
`sentence_ids`.
sentence_ids: The input sentence ids. This should have the same shape as
`token_ids`.
per_host_batch_size: The target per-host batch size.
Returns:
The tuple of reshaped tokens and sentence_ids.
"""
num_steps = len(tokens) // per_host_batch_size
truncated_data_length = num_steps * per_host_batch_size
logging.info("per_host_batch_size: %d", per_host_batch_size)
logging.info("num_steps: %d", num_steps)
def truncate_and_reshape(a):
return a[:truncated_data_length].reshape((per_host_batch_size, num_steps))
return (truncate_and_reshape(tokens), truncate_and_reshape(sentence_ids))
def _create_a_and_b_segments(
tokens: np.array,
sentence_ids: np.array,
begin_index: int,
total_length: int,
no_cut_probability: float = 0.5):
"""Splits segments A and B from a single instance of tokens and sentence ids.
Args:
tokens: The 1D input token ids. This represents an individual entry within a
batch.
sentence_ids: The 1D input sentence ids. This represents an individual entry
within a batch. This should be the same length as `tokens`.
begin_index: The reference beginning index to split data.
total_length: The target combined length of segments A and B.
no_cut_probability: The probability of not cutting a segment despite
a cut possibly existing.
Returns:
A tuple consisting of A data, B data, and label.
"""
data_length = tokens.shape[0]
if begin_index + total_length >= data_length:
logging.info("[_create_segments]: begin_index %d + total_length %d >= "
"data_length %d", begin_index, total_length, data_length)
return None
end_index = begin_index + 1
cut_indices = []
# Identify all indices where sentence IDs change from one to the next.
while end_index < data_length:
if sentence_ids[end_index] != sentence_ids[end_index - 1]:
if end_index - begin_index >= total_length:
break
cut_indices.append(end_index)
end_index += 1
a_begin = begin_index
if not cut_indices or random.random() < no_cut_probability:
# Segments A and B are contained within the same sentence.
label = 0
if not cut_indices:
a_end = end_index
else:
a_end = random.choice(cut_indices)
b_length = max(1, total_length - (a_end - a_begin))
b_begin = random.randint(0, data_length - 1 - b_length)
b_end = b_begin + b_length
while b_begin > 0 and sentence_ids[b_begin - 1] == sentence_ids[b_begin]:
b_begin -= 1
while (b_end < data_length - 1 and
sentence_ids[b_end - 1] == sentence_ids[b_end]):
b_end += 1
else:
# Segments A and B are different sentences.
label = 1
a_end = random.choice(cut_indices)
b_begin = a_end
b_end = end_index
while a_end - a_begin + b_end - b_begin > total_length:
if a_end - a_begin > b_end - b_begin:
# Delete only the right side for the LM objective.
a_end -= 1
else:
b_end -= 1
if a_end >= data_length or b_end >= data_length:
logging.info("[_create_segments]: a_end %d or b_end %d >= data_length %d",
a_end, b_end, data_length)
return None
a_data = tokens[a_begin: a_end]
b_data = tokens[b_begin: b_end]
return a_data, b_data, label
def _is_functional_piece(piece: str) -> bool:
return piece != "<unk>" and piece.startswith("<") and piece.endswith(">")
def _is_start_piece(piece: str) -> bool:
special_pieces = set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~'))
if (piece.startswith("▁") or piece in special_pieces):
return True
else:
return False
def _get_boundary_indices(
data: np.array,
tokenizer: tokenization.FullSentencePieceTokenizer) -> np.array:
"""Gets the boundary indices of whole words."""
seq_length = len(data)
boundary_indices = []
for index, piece in enumerate(tokenizer.convert_ids_to_tokens(data.tolist())):
if _is_start_piece(piece) and not _is_functional_piece(piece):
boundary_indices.append(index)
boundary_indices.append(seq_length)
return boundary_indices
def _convert_tokens_to_instances(
tokens: np.array,
sentence_ids: np.array,
per_host_batch_size: int,
seq_length: int,
reuse_length: int,
bi_data: bool,
tokenizer: tokenization.FullSentencePieceTokenizer,
num_cores_per_host: int = 0,
logging_frequency: int = 500) -> List[TrainingInstance]:
"""Converts tokens and sentence IDs into individual training instances.
The format of data in the XLNet pretraining task is very similar to the
BERT pretraining task. Two segments A and B are randomly sampled, and the
contatenation of A and B into a single sequence is used to perform
language modeling.
To create an XLNet Pretraining instance from a single long sequence, S:
- Create a segment of length `reuse_length`. This first segment represents
past tokens. During modeling, this segment is used to cache obtained
content representations for the segment recurrence mechanism.
- Similar to BERT, create a segment of length `seq_length` - `reuse_length`
composed of A and B segments.
For XLNet, the order is "A", "SEP", "B", "SEP", "CLS".
Args:
tokens: All tokens concatenated into a single list.
sentence_ids: All sentence IDs concatenated into a single list.
per_host_batch_size: The target batch size per host.
seq_length: The max sequence length.
reuse_length: The number of tokens to use from the previous segment.
bi_data: Whether or not to use bidirectional data.
tokenizer: The SentencePiece tokenizer that has the attribute `sp_model`.
num_cores_per_host: The number of cores per host. This is required if
`bi_data` = `True`.
logging_frequency: The frequency at which to log status updates.
Returns:
A list of `TrainingInstance` objects.
"""
instances = []
per_core_batch_size = (per_host_batch_size // num_cores_per_host
if bi_data else None)
if bi_data:
logging.info("Bi-directional data enabled.")
assert per_host_batch_size % (2 * num_cores_per_host) == 0
forward_tokens, forward_sentence_ids = _reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size // 2)
forward_data_shape = (num_cores_per_host, 1, per_core_batch_size // 2, -1)
forward_tokens = forward_tokens.reshape(forward_data_shape)
forward_sentence_ids = forward_sentence_ids.reshape(forward_data_shape)
backwards_tokens = forward_tokens[:, :, :, ::-1]
backwards_sentence_ids = forward_sentence_ids[:, :, :, ::-1]
tokens = np.concatenate([forward_tokens, backwards_tokens], 1).reshape(
per_host_batch_size, -1)
sentence_ids = np.concatenate(
[forward_sentence_ids, backwards_sentence_ids]).reshape(
per_host_batch_size, -1)
else:
logging.info("Bi-directional data disabled.")
tokens, sentence_ids = _reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size)
logging.info("Tokens shape: %s", tokens.shape)
data_length = tokens.shape[1]
sep = np.array([special_symbols["<sep>"]], dtype=np.int64)
cls = np.array([special_symbols["<cls>"]], dtype=np.int64)
# 2 sep, 1 cls
num_special_tokens = 3
data_index = 0
batch_number = 0
step_size = reuse_length if reuse_length else seq_length
num_batches = math.ceil(data_length / step_size)
while data_index + seq_length <= data_length:
if batch_number % logging_frequency == 0:
logging.info("Processing batch %d of %d", batch_number, num_batches)
for batch_index in range(per_host_batch_size):
previous_segment_tokens = tokens[
batch_index, data_index: data_index + reuse_length]
results = _create_a_and_b_segments(
tokens=tokens[batch_index],
sentence_ids=sentence_ids[batch_index],
begin_index=data_index + reuse_length,
total_length=seq_length - reuse_length - num_special_tokens)
if results is None:
logging.info("Stopping at data index: %d", data_index)
break
a_data, b_data, label = results
data = np.concatenate(
[previous_segment_tokens, a_data, sep, b_data, sep, cls])
a_length = a_data.shape[0]
b_length = b_data.shape[0]
segment_ids = ([0] * (reuse_length + a_length) + [0]
+ [1] * b_length + [1] + [2])
boundary_indices = _get_boundary_indices(tokenizer=tokenizer,
data=data)
assert len(data) == seq_length
assert len(segment_ids) == seq_length
assert len(boundary_indices) > 0 # pylint: disable=g-explicit-length-test
instances.append(TrainingInstance(
data=data,
segment_ids=segment_ids,
boundary_indices=boundary_indices,
label=label))
batch_number += 1
data_index += step_size
return instances
def write_instances_to_tfrecord(
instances: Iterable[TrainingInstance],
save_path: str):
"""Writes instances to TFRecord."""
record_writer = tf.io.TFRecordWriter(save_path)
logging.info("Start writing to %s.", save_path)
for i, instance in enumerate(instances):
if i < 5:
logging.info("Instance %d: %s", i, str(instance))
record_writer.write(instance.to_example().SerializeToString())
record_writer.close()
logging.info("Done writing %s.", save_path)
def shuffle_and_combine_preprocessed_data(
all_data: List[Tuple[np.array, np.array]]) -> Tuple[np.array, np.array]:
"""Shuffles and combines preprocessed token/sentence IDs from documents."""
document_permutation = np.random.permutation(len(all_data))
previous_sentence_id = None
all_tokens, all_sentence_ids = [], []
for document_index in document_permutation:
tokens, sentence_ids = all_data[document_index]
# pylint: disable=g-explicit-length-test
if len(tokens) == 0:
continue
if (previous_sentence_id is not None and
sentence_ids[0] == previous_sentence_id):
sentence_ids = np.logical_not(sentence_ids)
all_tokens.append(tokens)
all_sentence_ids.append(sentence_ids)
previous_sentence_id = sentence_ids[-1]
return np.concatenate(all_tokens), np.concatenate(all_sentence_ids)
def get_tfrecord_name(
per_host_batch_size: int,
num_cores_per_host: int,
seq_length: int,
bi_data: bool,
reuse_length: int,
do_lower_case: bool,
use_eod_token: bool,
prefix: str = "",
suffix: str = "",
pass_id: int = 0,
num_passes: int = 1,
task_id: int = None,
num_tasks: int = None) -> str:
"""Formats the resulting TFRecord name based on provided inputs."""
components = []
if prefix:
components.append(prefix)
components.append("seqlen-{}".format(seq_length))
if reuse_length == 0:
components.append("memless")
else:
components.append("reuse-{}".format(reuse_length))
components.append("bs-{}".format(per_host_batch_size))
components.append("cores-{}".format(num_cores_per_host))
if do_lower_case:
components.append("uncased")
else:
components.append("cased")
if use_eod_token:
components.append("eod")
if bi_data:
components.append("bi")
else:
components.append("uni")
if suffix:
components.append(suffix)
s = "_".join(components) + ".tfrecord"
if num_passes == 1 and task_id is None:
return s
if task_id is None:
num_tasks = 1
task_id = 0
current_shard = task_id * num_passes + pass_id
total_shards = num_tasks * num_passes
return s + "-{}-of-{}".format(current_shard, total_shards)
def create_tfrecords(
tokenizer: tokenization.FullSentencePieceTokenizer,
input_file_or_files: str,
use_eod_token: bool,
do_lower_case: bool,
per_host_batch_size: int,
seq_length: int,
reuse_length: int,
bi_data: bool,
num_cores_per_host: int,
save_dir: str,
prefix: str = "",
suffix: str = "",
num_tasks: Optional[int] = None,
task_id: Optional[int] = None,
num_passes: int = 1):
"""Runs the end-to-end preprocessing pipeline."""
logging.info("Input configuration:")
logging.info("input file(s): %s", input_file_or_files)
logging.info("use_eod_token: %s", use_eod_token)
logging.info("do_lower_case: %s", do_lower_case)
logging.info("per_host_batch_size: %d", per_host_batch_size)
logging.info("seq_length: %d", seq_length)
logging.info("reuse_length: %d", reuse_length)
logging.info("bi_data: %s", bi_data)
logging.info("num_cores_per_host: %d", num_cores_per_host)
logging.info("save_dir: %s", save_dir)
if task_id is not None and num_tasks is not None:
logging.info("task_id: %d", task_id)
logging.info("num_tasks: %d", num_tasks)
input_files = []
for input_pattern in input_file_or_files.split(","):
input_files.extend(tf.io.gfile.glob(input_pattern))
logging.info("*** Reading from input files ***")
for input_file in input_files:
logging.info(" %s", input_file)
logging.info("Shuffling the files with a fixed random seed.")
np.random.shuffle(input_files)
if num_tasks is not None:
assert task_id is not None
logging.info("Total number of input files: %d", len(input_files))
logging.info("Splitting into %d shards of %d files each.",
num_tasks, len(input_files) // num_tasks)
input_files = input_files[task_id::num_tasks]
all_data = preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=tokenizer,
use_eod=use_eod_token,
do_lower_case=do_lower_case)
for pass_id in range(num_passes):
logging.info("Beginning pass %d of %d", pass_id, num_passes)
tokens, sentence_ids = shuffle_and_combine_preprocessed_data(all_data)
assert len(tokens) == len(sentence_ids)
filename = get_tfrecord_name(
per_host_batch_size=per_host_batch_size,
num_cores_per_host=num_cores_per_host,
seq_length=seq_length,
bi_data=bi_data,
use_eod_token=use_eod_token,
reuse_length=reuse_length,
do_lower_case=do_lower_case,
prefix=prefix,
suffix=suffix,
pass_id=pass_id,
num_passes=num_passes,
num_tasks=num_tasks,
task_id=task_id)
save_path = os.path.join(save_dir, filename)
if os.path.exists(save_path):
# If the path already exists, then we were probably preempted but
# previously wrote this file.
logging.info("%s already exists, skipping this batch.", save_path)
else:
instances = _convert_tokens_to_instances(
tokenizer=tokenizer,
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size,
seq_length=seq_length,
reuse_length=reuse_length,
bi_data=bi_data,
num_cores_per_host=num_cores_per_host)
write_instances_to_tfrecord(instances=instances, save_path=save_path)
if task_id is None or task_id == 0:
corpus_info = {
"vocab_size": 32000,
"per_host_batch_size": per_host_batch_size,
"num_cores_per_host": num_cores_per_host,
"seq_length": seq_length,
"reuse_length": reuse_length,
"do_lower_case": do_lower_case,
"bi_data": bi_data,
"use_eod_token": use_eod_token,
}
corpus_fname = os.path.basename(filename) + ".json"
corpus_destination = os.path.join(save_dir, corpus_fname)
logging.info("Saving corpus info to %s", corpus_destination)
with tf.io.gfile.GFile(corpus_destination, "w") as fp:
json.dump(corpus_info, fp)
def main(_):
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
create_tfrecords(
tokenizer=tokenizer,
input_file_or_files=FLAGS.input_file,
use_eod_token=FLAGS.use_eod_token,
do_lower_case=FLAGS.do_lower_case,
per_host_batch_size=FLAGS.per_host_batch_size,
seq_length=FLAGS.seq_length,
reuse_length=FLAGS.reuse_length,
bi_data=FLAGS.bi_data,
num_cores_per_host=FLAGS.num_cores_per_host,
save_dir=FLAGS.save_dir,
prefix=FLAGS.prefix,
suffix=FLAGS.suffix,
num_tasks=FLAGS.num_tasks,
task_id=FLAGS.task_id,
num_passes=FLAGS.num_passes)
if __name__ == "__main__":
np.random.seed(0)
logging.set_verbosity(logging.INFO)
app.run(main)