ISCO-code-predictor-api / pretrain_text_dataloader.py
Pradeep Kumar
Upload 33 files
f18e71f verified
raw
history blame
9.23 kB
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loads text dataset for the BERT pretraining task."""
import dataclasses
from typing import List, Mapping, Optional, Text
import tensorflow as tf, tf_keras
import tensorflow_text as tf_text
from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory
from official.nlp.modeling.ops import segment_extractor
@dataclasses.dataclass
class BertPretrainTextDataConfig(cfg.DataConfig):
"""Data config for BERT pretraining task (tasks/masked_lm) from text."""
input_path: str = ""
doc_batch_size: int = 8
global_batch_size: int = 512
is_training: bool = True
seq_length: int = 512
max_predictions_per_seq: int = 76
use_next_sentence_label: bool = True
# The name of the text feature fields. The text features will be
# concatenated in order.
# Note: More than 1 field name is not compatible with NSP.
text_field_names: Optional[List[str]] = dataclasses.field(
default_factory=lambda: ["text"])
vocab_file_path: str = ""
masking_rate: float = 0.15
use_whole_word_masking: bool = False
file_type: str = "tfrecord"
_CLS_TOKEN = b"[CLS]"
_SEP_TOKEN = b"[SEP]"
_MASK_TOKEN = b"[MASK]"
_NUM_OOV_BUCKETS = 1
# Accounts for [CLS] and 2 x [SEP] tokens
_NUM_SPECIAL_TOKENS = 3
@data_loader_factory.register_data_loader_cls(BertPretrainTextDataConfig)
class BertPretrainTextDataLoader(data_loader.DataLoader):
"""A class to load text dataset for BERT pretraining task."""
def __init__(self, params):
"""Inits `BertPretrainTextDataLoader` class.
Args:
params: A `BertPretrainTextDataConfig` object.
"""
if len(params.text_field_names) > 1 and params.use_next_sentence_label:
raise ValueError("Currently there is no support for more than text field "
"while generating next sentence labels.")
self._params = params
self._seq_length = params.seq_length
self._max_predictions_per_seq = params.max_predictions_per_seq
self._use_next_sentence_label = params.use_next_sentence_label
self._masking_rate = params.masking_rate
self._use_whole_word_masking = params.use_whole_word_masking
lookup_table_init = tf.lookup.TextFileInitializer(
params.vocab_file_path,
key_dtype=tf.string,
key_index=tf.lookup.TextFileIndex.WHOLE_LINE,
value_dtype=tf.int64,
value_index=tf.lookup.TextFileIndex.LINE_NUMBER)
self._vocab_lookup_table = tf.lookup.StaticVocabularyTable(
lookup_table_init,
num_oov_buckets=_NUM_OOV_BUCKETS,
lookup_key_dtype=tf.string)
self._cls_token = self._vocab_lookup_table.lookup(tf.constant(_CLS_TOKEN))
self._sep_token = self._vocab_lookup_table.lookup(tf.constant(_SEP_TOKEN))
self._mask_token = self._vocab_lookup_table.lookup(tf.constant(_MASK_TOKEN))
# -_NUM_OOV_BUCKETS to offset unused OOV bucket.
self._vocab_size = self._vocab_lookup_table.size() - _NUM_OOV_BUCKETS
def _decode(self, record: tf.Tensor) -> Mapping[Text, tf.Tensor]:
"""Decodes a serialized tf.Example."""
name_to_features = {}
for text_field_name in self._params.text_field_names:
name_to_features[text_field_name] = tf.io.FixedLenFeature([], tf.string)
return tf.io.parse_single_example(record, name_to_features)
def _tokenize(self, segments):
"""Tokenize the input segments."""
# Tokenize segments
tokenizer = tf_text.BertTokenizer(
self._vocab_lookup_table, token_out_type=tf.int64)
if self._use_whole_word_masking:
# tokenize the segments which should have the shape:
# [num_sentence, (num_words), (num_wordpieces)]
segments = [tokenizer.tokenize(s) for s in segments]
else:
# tokenize the segments and merge out the token dimension so that each
# segment has the shape: [num_sentence, (num_wordpieces)]
segments = [tokenizer.tokenize(s).merge_dims(-2, -1) for s in segments]
# Truncate inputs
trimmer = tf_text.WaterfallTrimmer(
self._seq_length - _NUM_SPECIAL_TOKENS, axis=-1)
truncated_segments = trimmer.trim(segments)
# Combine segments, get segment ids and add special tokens
return tf_text.combine_segments(
truncated_segments,
start_of_sequence_id=self._cls_token,
end_of_segment_id=self._sep_token)
def _bert_preprocess(self, record: Mapping[str, tf.Tensor]):
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
if self._use_next_sentence_label:
input_text = record[self._params.text_field_names[0]]
# Split sentences
sentence_breaker = tf_text.RegexSplitter()
sentences = sentence_breaker.split(input_text)
# Extract next-sentence-prediction labels and segments
next_or_random_segment, is_next = (
segment_extractor.get_next_sentence_labels(sentences))
# merge dims to change shape from [num_docs, (num_segments)] to
# [total_num_segments]
is_next = is_next.merge_dims(-2, -1)
# construct segments with shape [(num_sentence)]
segments = [
sentences.merge_dims(-2, -1),
next_or_random_segment.merge_dims(-2, -1)
]
else:
segments = [record[name] for name in self._params.text_field_names]
segments_combined, segment_ids = self._tokenize(segments)
# Dynamic masking
item_selector = tf_text.RandomItemSelector(
self._max_predictions_per_seq,
selection_rate=self._masking_rate,
unselectable_ids=[self._cls_token, self._sep_token],
shuffle_fn=(tf.identity if self._params.deterministic else None))
values_chooser = tf_text.MaskValuesChooser(
vocab_size=self._vocab_size, mask_token=self._mask_token)
masked_input_ids, masked_lm_positions, masked_lm_ids = (
tf_text.mask_language_model(
segments_combined,
item_selector=item_selector,
mask_values_chooser=values_chooser,
))
# Pad out to fixed shape and get input mask.
seq_lengths = {
"input_word_ids": self._seq_length,
"input_type_ids": self._seq_length,
"masked_lm_positions": self._max_predictions_per_seq,
"masked_lm_ids": self._max_predictions_per_seq,
}
model_inputs = {
"input_word_ids": masked_input_ids,
"input_type_ids": segment_ids,
"masked_lm_positions": masked_lm_positions,
"masked_lm_ids": masked_lm_ids,
}
padded_inputs_and_mask = tf.nest.map_structure(tf_text.pad_model_inputs,
model_inputs, seq_lengths)
model_inputs = {
k: padded_inputs_and_mask[k][0] for k in padded_inputs_and_mask
}
model_inputs["masked_lm_weights"] = tf.cast(
padded_inputs_and_mask["masked_lm_ids"][1], tf.float32)
model_inputs["input_mask"] = padded_inputs_and_mask["input_word_ids"][1]
if self._use_next_sentence_label:
model_inputs["next_sentence_labels"] = is_next
for name in model_inputs:
t = model_inputs[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
model_inputs[name] = t
return model_inputs
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
def _batch_docs(dataset, input_context):
per_core_doc_batch_size = (
input_context.get_per_replica_batch_size(self._params.doc_batch_size)
if input_context else self._params.doc_batch_size)
return dataset.batch(per_core_doc_batch_size)
reader = input_reader.InputReader(
params=self._params,
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
decoder_fn=self._decode if self._params.input_path else None,
transform_and_batch_fn=_batch_docs
if self._use_next_sentence_label else None,
postprocess_fn=self._bert_preprocess)
transformed_inputs = reader.read(input_context)
per_core_example_batch_size = (
input_context.get_per_replica_batch_size(self._params.global_batch_size)
if input_context else self._params.global_batch_size)
batched_inputs = transformed_inputs.unbatch().batch(
per_core_example_batch_size, self._params.drop_remainder)
return batched_inputs.prefetch(tf.data.experimental.AUTOTUNE)