Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Loads dataset for the question answering (e.g, SQuAD) task.""" | |
import dataclasses | |
from typing import Mapping, Optional | |
import tensorflow as tf, tf_keras | |
from official.common import dataset_fn | |
from official.core import config_definitions as cfg | |
from official.core import input_reader | |
from official.nlp.data import data_loader | |
from official.nlp.data import data_loader_factory | |
class QADataConfig(cfg.DataConfig): | |
"""Data config for question answering task (tasks/question_answering).""" | |
# For training, `input_path` is expected to be a pre-processed TFRecord file, | |
# while for evaluation, it is expected to be a raw JSON file (b/173814590). | |
input_path: str = '' | |
global_batch_size: int = 48 | |
is_training: bool = True | |
seq_length: int = 384 | |
# Settings below are question answering specific. | |
version_2_with_negative: bool = False | |
# Settings below are only used for eval mode. | |
input_preprocessed_data_path: str = '' | |
doc_stride: int = 128 | |
query_length: int = 64 | |
# The path to the vocab file of word piece tokenizer or the | |
# model of the sentence piece tokenizer. | |
vocab_file: str = '' | |
tokenization: str = 'WordPiece' # WordPiece or SentencePiece | |
do_lower_case: bool = True | |
xlnet_format: bool = False | |
file_type: str = 'tfrecord' | |
class QuestionAnsweringDataLoader(data_loader.DataLoader): | |
"""A class to load dataset for sentence prediction (classification) task.""" | |
def __init__(self, params): | |
self._params = params | |
self._seq_length = params.seq_length | |
self._is_training = params.is_training | |
self._xlnet_format = params.xlnet_format | |
def _decode(self, record: tf.Tensor): | |
"""Decodes a serialized tf.Example.""" | |
name_to_features = { | |
'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), | |
'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64), | |
'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), | |
} | |
if self._xlnet_format: | |
name_to_features['class_index'] = tf.io.FixedLenFeature([], tf.int64) | |
name_to_features['paragraph_mask'] = tf.io.FixedLenFeature( | |
[self._seq_length], tf.int64) | |
if self._is_training: | |
name_to_features['is_impossible'] = tf.io.FixedLenFeature([], tf.int64) | |
if self._is_training: | |
name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64) | |
name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64) | |
else: | |
name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64) | |
example = tf.io.parse_single_example(record, name_to_features) | |
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. | |
# So cast all int64 to int32. | |
for name in example: | |
t = example[name] | |
if t.dtype == tf.int64: | |
t = tf.cast(t, tf.int32) | |
example[name] = t | |
return example | |
def _parse(self, record: Mapping[str, tf.Tensor]): | |
"""Parses raw tensors into a dict of tensors to be consumed by the model.""" | |
x, y = {}, {} | |
for name, tensor in record.items(): | |
if name in ('start_positions', 'end_positions', 'is_impossible'): | |
y[name] = tensor | |
elif name == 'input_ids': | |
x['input_word_ids'] = tensor | |
elif name == 'segment_ids': | |
x['input_type_ids'] = tensor | |
else: | |
x[name] = tensor | |
if name == 'start_positions' and self._xlnet_format: | |
x[name] = tensor | |
return (x, y) | |
def load(self, input_context: Optional[tf.distribute.InputContext] = None): | |
"""Returns a tf.dataset.Dataset.""" | |
reader = input_reader.InputReader( | |
params=self._params, | |
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type), | |
decoder_fn=self._decode, | |
parser_fn=self._parse) | |
return reader.read(input_context) | |