Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.data.question_answering_dataloader.""" | |
import os | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.data import question_answering_dataloader | |
def _create_fake_dataset(output_path, seq_length): | |
"""Creates a fake dataset.""" | |
writer = tf.io.TFRecordWriter(output_path) | |
def create_int_feature(values): | |
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return f | |
for _ in range(100): | |
features = {} | |
input_ids = np.random.randint(100, size=(seq_length)) | |
features['input_ids'] = create_int_feature(input_ids) | |
features['input_mask'] = create_int_feature(np.ones_like(input_ids)) | |
features['segment_ids'] = create_int_feature(np.ones_like(input_ids)) | |
features['start_positions'] = create_int_feature(np.array([0])) | |
features['end_positions'] = create_int_feature(np.array([10])) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
class QuestionAnsweringDataTest(tf.test.TestCase): | |
def test_load_dataset(self): | |
seq_length = 128 | |
batch_size = 10 | |
input_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
_create_fake_dataset(input_path, seq_length) | |
data_config = question_answering_dataloader.QADataConfig( | |
is_training=True, | |
input_path=input_path, | |
seq_length=seq_length, | |
global_batch_size=batch_size) | |
dataset = question_answering_dataloader.QuestionAnsweringDataLoader( | |
data_config).load() | |
features, labels = next(iter(dataset)) | |
self.assertCountEqual(['input_word_ids', 'input_mask', 'input_type_ids'], | |
features.keys()) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) | |
self.assertCountEqual(['start_positions', 'end_positions'], labels.keys()) | |
self.assertEqual(labels['start_positions'].shape, (batch_size,)) | |
self.assertEqual(labels['end_positions'].shape, (batch_size,)) | |
if __name__ == '__main__': | |
tf.test.main() | |