ISCO-code-predictor-api / sentence_retrieval_lib.py
Pradeep Kumar
Upload 33 files
f18e71f verified
raw
history blame
6.58 kB
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT library to process data for cross lingual sentence retrieval task."""
import os
from absl import logging
from official.nlp.data import classifier_data_lib
from official.nlp.tools import tokenization
class BuccProcessor(classifier_data_lib.DataProcessor):
"""Procssor for Xtreme BUCC data set."""
supported_languages = ["de", "fr", "ru", "zh"]
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
super(BuccProcessor, self).__init__(process_text_fn)
self.languages = BuccProcessor.supported_languages
def get_dev_examples(self, data_dir, file_pattern):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, file_pattern.format("dev"))),
"sample")
def get_test_examples(self, data_dir, file_pattern):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, file_pattern.format("test"))),
"test")
@staticmethod
def get_processor_name():
"""See base class."""
return "BUCC"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
example_id = int(line[0].split("-")[1])
text_a = self.process_text_fn(line[1])
examples.append(
classifier_data_lib.InputExample(
guid=guid, text_a=text_a, example_id=example_id))
return examples
class TatoebaProcessor(classifier_data_lib.DataProcessor):
"""Procssor for Xtreme Tatoeba data set."""
supported_languages = [
"af", "ar", "bg", "bn", "de", "el", "es", "et", "eu", "fa", "fi", "fr",
"he", "hi", "hu", "id", "it", "ja", "jv", "ka", "kk", "ko", "ml", "mr",
"nl", "pt", "ru", "sw", "ta", "te", "th", "tl", "tr", "ur", "vi", "zh"
]
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
super(TatoebaProcessor, self).__init__(process_text_fn)
self.languages = TatoebaProcessor.supported_languages
def get_test_examples(self, data_dir, file_path):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, file_path)), "test")
@staticmethod
def get_processor_name():
"""See base class."""
return "TATOEBA"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = self.process_text_fn(line[0])
examples.append(
classifier_data_lib.InputExample(
guid=guid, text_a=text_a, example_id=i))
return examples
def generate_sentence_retrevial_tf_record(processor,
data_dir,
tokenizer,
eval_data_output_path=None,
test_data_output_path=None,
max_seq_length=128):
"""Generates the tf records for retrieval tasks.
Args:
processor: Input processor object to be used for generating data. Subclass
of `DataProcessor`.
data_dir: Directory that contains train/eval data to process. Data files
should be in from.
tokenizer: The tokenizer to be applied on the data.
eval_data_output_path: Output to which processed tf record for evaluation
will be saved.
test_data_output_path: Output to which processed tf record for testing
will be saved. Must be a pattern template with {} if processor has
language specific test data.
max_seq_length: Maximum sequence length of the to be generated
training/eval data.
Returns:
A dictionary containing input meta data.
"""
assert eval_data_output_path or test_data_output_path
if processor.get_processor_name() == "BUCC":
path_pattern = "{}-en.{{}}.{}"
if processor.get_processor_name() == "TATOEBA":
path_pattern = "{}-en.{}"
meta_data = {
"processor_type": processor.get_processor_name(),
"max_seq_length": max_seq_length,
"number_eval_data": {},
"number_test_data": {},
}
logging.info("Start to process %s task data", processor.get_processor_name())
for lang_a in processor.languages:
for lang_b in [lang_a, "en"]:
if eval_data_output_path:
eval_input_data_examples = processor.get_dev_examples(
data_dir, os.path.join(path_pattern.format(lang_a, lang_b)))
num_eval_data = len(eval_input_data_examples)
logging.info("Processing %d dev examples of %s-en.%s", num_eval_data,
lang_a, lang_b)
output_file = os.path.join(
eval_data_output_path,
"{}-en-{}.{}.tfrecords".format(lang_a, lang_b, "dev"))
classifier_data_lib.file_based_convert_examples_to_features(
eval_input_data_examples, None, max_seq_length, tokenizer,
output_file, None)
meta_data["number_eval_data"][f"{lang_a}-en.{lang_b}"] = num_eval_data
if test_data_output_path:
test_input_data_examples = processor.get_test_examples(
data_dir, os.path.join(path_pattern.format(lang_a, lang_b)))
num_test_data = len(test_input_data_examples)
logging.info("Processing %d test examples of %s-en.%s", num_test_data,
lang_a, lang_b)
output_file = os.path.join(
test_data_output_path,
"{}-en-{}.{}.tfrecords".format(lang_a, lang_b, "test"))
classifier_data_lib.file_based_convert_examples_to_features(
test_input_data_examples, None, max_seq_length, tokenizer,
output_file, None)
meta_data["number_test_data"][f"{lang_a}-en.{lang_b}"] = num_test_data
return meta_data