Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""A converter from a V1 BERT encoder checkpoint to a V2 encoder checkpoint. | |
The conversion will yield an object-oriented checkpoint that can be used | |
to restore a BertEncoder or BertPretrainerV2 object (see the `converted_model` | |
FLAG below). | |
""" | |
import os | |
from absl import app | |
from absl import flags | |
import tensorflow as tf, tf_keras | |
from official.legacy.bert import configs | |
from official.modeling import tf_utils | |
from official.nlp.modeling import models | |
from official.nlp.modeling import networks | |
from official.nlp.tools import tf1_bert_checkpoint_converter_lib | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string("bert_config_file", None, | |
"Bert configuration file to define core bert layers.") | |
flags.DEFINE_string( | |
"checkpoint_to_convert", None, | |
"Initial checkpoint from a pretrained BERT model core (that is, only the " | |
"BertModel, with no task heads.)") | |
flags.DEFINE_string("converted_checkpoint_path", None, | |
"Name for the created object-based V2 checkpoint.") | |
flags.DEFINE_string("checkpoint_model_name", "encoder", | |
"The name of the model when saving the checkpoint, i.e., " | |
"the checkpoint will be saved using: " | |
"tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).") | |
flags.DEFINE_enum( | |
"converted_model", "encoder", ["encoder", "pretrainer"], | |
"Whether to convert the checkpoint to a `BertEncoder` model or a " | |
"`BertPretrainerV2` model (with mlm but without classification heads).") | |
def _create_bert_model(cfg): | |
"""Creates a BERT keras core model from BERT configuration. | |
Args: | |
cfg: A `BertConfig` to create the core model. | |
Returns: | |
A BertEncoder network. | |
""" | |
bert_encoder = networks.BertEncoder( | |
vocab_size=cfg.vocab_size, | |
hidden_size=cfg.hidden_size, | |
num_layers=cfg.num_hidden_layers, | |
num_attention_heads=cfg.num_attention_heads, | |
intermediate_size=cfg.intermediate_size, | |
activation=tf_utils.get_activation(cfg.hidden_act), | |
dropout_rate=cfg.hidden_dropout_prob, | |
attention_dropout_rate=cfg.attention_probs_dropout_prob, | |
max_sequence_length=cfg.max_position_embeddings, | |
type_vocab_size=cfg.type_vocab_size, | |
initializer=tf_keras.initializers.TruncatedNormal( | |
stddev=cfg.initializer_range), | |
embedding_width=cfg.embedding_size) | |
return bert_encoder | |
def _create_bert_pretrainer_model(cfg): | |
"""Creates a BERT keras core model from BERT configuration. | |
Args: | |
cfg: A `BertConfig` to create the core model. | |
Returns: | |
A BertPretrainerV2 model. | |
""" | |
bert_encoder = _create_bert_model(cfg) | |
pretrainer = models.BertPretrainerV2( | |
encoder_network=bert_encoder, | |
mlm_activation=tf_utils.get_activation(cfg.hidden_act), | |
mlm_initializer=tf_keras.initializers.TruncatedNormal( | |
stddev=cfg.initializer_range)) | |
# Makes sure the pretrainer variables are created. | |
_ = pretrainer(pretrainer.inputs) | |
return pretrainer | |
def convert_checkpoint(bert_config, | |
output_path, | |
v1_checkpoint, | |
checkpoint_model_name="model", | |
converted_model="encoder"): | |
"""Converts a V1 checkpoint into an OO V2 checkpoint.""" | |
output_dir, _ = os.path.split(output_path) | |
tf.io.gfile.makedirs(output_dir) | |
# Create a temporary V1 name-converted checkpoint in the output directory. | |
temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1") | |
temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt") | |
tf1_bert_checkpoint_converter_lib.convert( | |
checkpoint_from_path=v1_checkpoint, | |
checkpoint_to_path=temporary_checkpoint, | |
num_heads=bert_config.num_attention_heads, | |
name_replacements=( | |
tf1_bert_checkpoint_converter_lib.BERT_V2_NAME_REPLACEMENTS), | |
permutations=tf1_bert_checkpoint_converter_lib.BERT_V2_PERMUTATIONS, | |
exclude_patterns=["adam", "Adam"]) | |
if converted_model == "encoder": | |
model = _create_bert_model(bert_config) | |
elif converted_model == "pretrainer": | |
model = _create_bert_pretrainer_model(bert_config) | |
else: | |
raise ValueError("Unsupported converted_model: %s" % converted_model) | |
# Create a V2 checkpoint from the temporary checkpoint. | |
tf1_bert_checkpoint_converter_lib.create_v2_checkpoint( | |
model, temporary_checkpoint, output_path, checkpoint_model_name) | |
# Clean up the temporary checkpoint, if it exists. | |
try: | |
tf.io.gfile.rmtree(temporary_checkpoint_dir) | |
except tf.errors.OpError: | |
# If it doesn't exist, we don't need to clean it up; continue. | |
pass | |
def main(argv): | |
if len(argv) > 1: | |
raise app.UsageError("Too many command-line arguments.") | |
output_path = FLAGS.converted_checkpoint_path | |
v1_checkpoint = FLAGS.checkpoint_to_convert | |
checkpoint_model_name = FLAGS.checkpoint_model_name | |
converted_model = FLAGS.converted_model | |
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
convert_checkpoint( | |
bert_config=bert_config, | |
output_path=output_path, | |
v1_checkpoint=v1_checkpoint, | |
checkpoint_model_name=checkpoint_model_name, | |
converted_model=converted_model) | |
if __name__ == "__main__": | |
app.run(main) | |