Spaces:
Running
Running
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Input pipeline for the transformer model to read, filter, and batch examples. | |
Batching scheme | |
Prior to batching, elements in the dataset are grouped by length (max between | |
'inputs' and 'targets' length). Each group is then batched such that: | |
group_batch_size * length <= batch_size. | |
Another way to view batch_size is the maximum number of tokens in each batch. | |
Once batched, each element in the dataset will have the shape: | |
{'inputs': [group_batch_size, padded_input_length], | |
'targets': [group_batch_size, padded_target_length]} | |
Lengths are padded to the longest 'inputs' or 'targets' sequence in the batch | |
(padded_input_length and padded_target_length can be different). | |
This batching scheme decreases the fraction of padding tokens per training | |
batch, thus improving the training speed significantly. | |
""" | |
from typing import Dict, Optional | |
import dataclasses | |
import tensorflow as tf, tf_keras | |
import tensorflow_text as tftxt | |
from official.core import config_definitions as cfg | |
from official.core import input_reader | |
from official.nlp.data import data_loader | |
from official.nlp.data import data_loader_factory | |
# Example grouping constants. Defines length boundaries for each group. | |
# These values are the defaults used in Tensor2Tensor. | |
_MIN_BOUNDARY = 8 | |
_BOUNDARY_SCALE = 1.1 | |
def _get_example_length(example): | |
"""Returns the maximum length between the example inputs and targets.""" | |
length = tf.maximum(tf.shape(example[0])[0], tf.shape(example[1])[0]) | |
return length | |
def _create_min_max_boundaries(max_length, | |
min_boundary=_MIN_BOUNDARY, | |
boundary_scale=_BOUNDARY_SCALE): | |
"""Create min and max boundary lists up to max_length. | |
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the | |
returned values will be: | |
buckets_min = [0, 4, 8, 16] | |
buckets_max = [4, 8, 16, 25] | |
Args: | |
max_length: The maximum length of example in dataset. | |
min_boundary: Minimum length in boundary. | |
boundary_scale: Amount to scale consecutive boundaries in the list. | |
Returns: | |
min and max boundary lists | |
""" | |
# Create bucket boundaries list by scaling the previous boundary or adding 1 | |
# (to ensure increasing boundary sizes). | |
bucket_boundaries = [] | |
x = min_boundary | |
while x < max_length: | |
bucket_boundaries.append(x) | |
x = max(x + 1, int(x * boundary_scale)) | |
# Create min and max boundary lists from the initial list. | |
buckets_min = [0] + bucket_boundaries | |
buckets_max = bucket_boundaries + [max_length + 1] | |
return buckets_min, buckets_max | |
def _batch_examples(dataset, batch_size, max_length): | |
"""Group examples by similar lengths, and return batched dataset. | |
Each batch of similar-length examples are padded to the same length, and may | |
have different number of elements in each batch, such that: | |
group_batch_size * padded_length <= batch_size. | |
This decreases the number of padding tokens per batch, which improves the | |
training speed. | |
Args: | |
dataset: Dataset of unbatched examples. | |
batch_size: Max number of tokens per batch of examples. | |
max_length: Max number of tokens in an example input or target sequence. | |
Returns: | |
Dataset of batched examples with similar lengths. | |
""" | |
# Get min and max boundary lists for each example. These are used to calculate | |
# the `bucket_id`, which is the index at which: | |
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id] | |
# Note that using both min and max lists improves the performance. | |
buckets_min, buckets_max = _create_min_max_boundaries(max_length) | |
# Create list of batch sizes for each bucket_id, so that | |
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size | |
bucket_batch_sizes = [int(batch_size) // x for x in buckets_max] | |
# Validates bucket batch sizes. | |
if any([batch_size <= 0 for batch_size in bucket_batch_sizes]): | |
raise ValueError( | |
'The token budget, global batch size, is too small to yield 0 bucket ' | |
'window: %s' % str(bucket_batch_sizes)) | |
# bucket_id will be a tensor, so convert this list to a tensor as well. | |
bucket_batch_sizes = tf.constant(bucket_batch_sizes, dtype=tf.int64) | |
def example_to_bucket_id(example): | |
"""Return int64 bucket id for this example, calculated based on length.""" | |
example_input = example['inputs'] | |
example_target = example['targets'] | |
seq_length = _get_example_length((example_input, example_target)) | |
conditions_c = tf.logical_and( | |
tf.less_equal(buckets_min, seq_length), tf.less(seq_length, | |
buckets_max)) | |
bucket_id = tf.reduce_min(tf.where(conditions_c)) | |
return bucket_id | |
def window_size_fn(bucket_id): | |
"""Return number of examples to be grouped when given a bucket id.""" | |
return bucket_batch_sizes[bucket_id] | |
def batching_fn(bucket_id, grouped_dataset): | |
"""Batch and add padding to a dataset of elements with similar lengths.""" | |
bucket_batch_size = window_size_fn(bucket_id) | |
# Batch the dataset and add padding so that all input sequences in the | |
# examples have the same length, and all target sequences have the same | |
# lengths as well. Resulting lengths of inputs and targets can differ. | |
padded_shapes = dict([ | |
(name, [None] * len(spec.shape)) | |
for name, spec in grouped_dataset.element_spec.items() | |
]) | |
return grouped_dataset.padded_batch(bucket_batch_size, padded_shapes) | |
return dataset.apply( | |
tf.data.experimental.group_by_window( | |
key_func=example_to_bucket_id, | |
reduce_func=batching_fn, | |
window_size=None, | |
window_size_func=window_size_fn)) | |
class WMTDataConfig(cfg.DataConfig): | |
"""Data config for WMT translation.""" | |
max_seq_length: int = 64 | |
static_batch: bool = False | |
sentencepiece_model_path: str = '' | |
src_lang: str = '' | |
tgt_lang: str = '' | |
transform_and_batch: bool = True | |
has_unique_id: bool = False | |
class WMTDataLoader(data_loader.DataLoader): | |
"""A class to load dataset for WMT translation task.""" | |
def __init__(self, params: WMTDataConfig): | |
self._params = params | |
self._max_seq_length = params.max_seq_length | |
self._static_batch = params.static_batch | |
self._global_batch_size = params.global_batch_size | |
if self._params.transform_and_batch: | |
self._tokenizer = tftxt.SentencepieceTokenizer( | |
model=tf.io.gfile.GFile(params.sentencepiece_model_path, 'rb').read(), | |
add_eos=True) | |
def _decode(self, record: tf.Tensor): | |
"""Decodes a serialized tf.Example.""" | |
name_to_features = { | |
self._params.src_lang: tf.io.FixedLenFeature([], tf.string), | |
self._params.tgt_lang: tf.io.FixedLenFeature([], tf.string), | |
} | |
if self._params.has_unique_id: | |
name_to_features['unique_id'] = tf.io.FixedLenFeature([], tf.int64) | |
example = tf.io.parse_single_example(record, name_to_features) | |
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. | |
# So cast all int64 to int32. | |
for name in example: | |
t = example[name] | |
if t.dtype == tf.int64: | |
t = tf.cast(t, tf.int32) | |
example[name] = t | |
return example | |
def _tokenize(self, inputs) -> Dict[str, tf.Tensor]: | |
tokenized_inputs = {} | |
for k, v in inputs.items(): | |
if k == self._params.src_lang: | |
tokenized_inputs['inputs'] = self._tokenizer.tokenize(v) | |
elif k == self._params.tgt_lang: | |
tokenized_inputs['targets'] = self._tokenizer.tokenize(v) | |
else: | |
tokenized_inputs[k] = v | |
print(tokenized_inputs) | |
return tokenized_inputs | |
def _filter_max_length(self, inputs): | |
# return tf.constant(True) | |
return tf.logical_and( | |
tf.shape(inputs['inputs'])[0] <= self._max_seq_length, | |
tf.shape(inputs['targets'])[0] <= self._max_seq_length) | |
def _maybe_truncate(self, inputs): | |
truncated_inputs = {} | |
for k, v in inputs.items(): | |
if k == 'inputs' or k == 'targets': | |
truncated_inputs[k] = tf.pad( | |
v[:self._max_seq_length - 1], [[0, 1]], | |
constant_values=1) if tf.shape(v)[0] > self._max_seq_length else v | |
else: | |
truncated_inputs[k] = v | |
return truncated_inputs | |
def _tokenize_bucketize_and_batch( | |
self, | |
dataset, | |
input_context: Optional[tf.distribute.InputContext] = None): | |
dataset = dataset.map( | |
self._tokenize, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
if self._params.is_training: | |
dataset = dataset.filter(self._filter_max_length) | |
else: | |
dataset = dataset.map( | |
self._maybe_truncate, | |
num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
per_replica_batch_size = input_context.get_per_replica_batch_size( | |
self._global_batch_size) if input_context else self._global_batch_size | |
if self._static_batch: | |
padded_shapes = {} | |
for name, _ in dataset.element_spec.items(): | |
if name == 'unique_id': | |
padded_shapes[name] = [] | |
else: | |
padded_shapes[name] = [self._max_seq_length | |
] if self._static_batch else [None] | |
batch_size = per_replica_batch_size | |
if self._params.is_training: | |
batch_size = int(batch_size // self._max_seq_length) | |
dataset = dataset.padded_batch( | |
batch_size, | |
padded_shapes, | |
drop_remainder=True) | |
else: | |
# Group and batch such that each batch has examples of similar length. | |
dataset = _batch_examples(dataset, per_replica_batch_size, | |
self._max_seq_length) | |
# Prefetch the next element to improve speed of input pipeline. | |
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) | |
return dataset | |
def load(self, input_context: Optional[tf.distribute.InputContext] = None): | |
"""Returns a tf.dataset.Dataset.""" | |
decoder_fn = None | |
# Only decode for TFRecords. | |
if self._params.input_path: | |
decoder_fn = self._decode | |
def _identity( | |
dataset, input_context: Optional[tf.distribute.InputContext] = None): | |
del input_context | |
return dataset | |
transform_and_batch_fn = _identity | |
if self._params.transform_and_batch: | |
transform_and_batch_fn = self._tokenize_bucketize_and_batch | |
reader = input_reader.InputReader( | |
params=self._params, | |
decoder_fn=decoder_fn, | |
transform_and_batch_fn=transform_and_batch_fn) | |
return reader.read(input_context) | |