Pradeep Kumar commited on
Commit
021cd97
·
verified ·
1 Parent(s): adc4eb5

Delete question_answering_dataloader_test.py

Browse files
question_answering_dataloader_test.py DELETED
@@ -1,74 +0,0 @@
1
- # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- """Tests for official.nlp.data.question_answering_dataloader."""
16
- import os
17
-
18
- import numpy as np
19
- import tensorflow as tf, tf_keras
20
-
21
- from official.nlp.data import question_answering_dataloader
22
-
23
-
24
- def _create_fake_dataset(output_path, seq_length):
25
- """Creates a fake dataset."""
26
- writer = tf.io.TFRecordWriter(output_path)
27
-
28
- def create_int_feature(values):
29
- f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
30
- return f
31
-
32
- for _ in range(100):
33
- features = {}
34
- input_ids = np.random.randint(100, size=(seq_length))
35
- features['input_ids'] = create_int_feature(input_ids)
36
- features['input_mask'] = create_int_feature(np.ones_like(input_ids))
37
- features['segment_ids'] = create_int_feature(np.ones_like(input_ids))
38
- features['start_positions'] = create_int_feature(np.array([0]))
39
- features['end_positions'] = create_int_feature(np.array([10]))
40
-
41
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
42
- writer.write(tf_example.SerializeToString())
43
- writer.close()
44
-
45
-
46
- class QuestionAnsweringDataTest(tf.test.TestCase):
47
-
48
- def test_load_dataset(self):
49
- seq_length = 128
50
- batch_size = 10
51
- input_path = os.path.join(self.get_temp_dir(), 'train.tf_record')
52
- _create_fake_dataset(input_path, seq_length)
53
- data_config = question_answering_dataloader.QADataConfig(
54
- is_training=True,
55
- input_path=input_path,
56
- seq_length=seq_length,
57
- global_batch_size=batch_size)
58
- dataset = question_answering_dataloader.QuestionAnsweringDataLoader(
59
- data_config).load()
60
- features, labels = next(iter(dataset))
61
-
62
- self.assertCountEqual(['input_word_ids', 'input_mask', 'input_type_ids'],
63
- features.keys())
64
- self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length))
65
- self.assertEqual(features['input_mask'].shape, (batch_size, seq_length))
66
- self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length))
67
-
68
- self.assertCountEqual(['start_positions', 'end_positions'], labels.keys())
69
- self.assertEqual(labels['start_positions'].shape, (batch_size,))
70
- self.assertEqual(labels['end_positions'].shape, (batch_size,))
71
-
72
-
73
- if __name__ == '__main__':
74
- tf.test.main()