Spaces:
Sleeping
Sleeping
Delete train_sentencepiece.py
Browse files- train_sentencepiece.py +0 -133
train_sentencepiece.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""A script to train sentencepiece model from tensorflow datasets.
|
16 |
-
|
17 |
-
Reserved tokens:
|
18 |
-
pad: 0,
|
19 |
-
eos: 1,
|
20 |
-
unk: 2
|
21 |
-
(bos is not reserved)
|
22 |
-
"""
|
23 |
-
|
24 |
-
import os
|
25 |
-
import tempfile
|
26 |
-
from typing import List, Tuple
|
27 |
-
|
28 |
-
from absl import app
|
29 |
-
from absl import flags
|
30 |
-
from absl import logging
|
31 |
-
import tensorflow as tf, tf_keras
|
32 |
-
import tensorflow_datasets as tfds
|
33 |
-
|
34 |
-
from sentencepiece import SentencePieceTrainer
|
35 |
-
|
36 |
-
|
37 |
-
FLAGS = flags.FLAGS
|
38 |
-
flags.DEFINE_string("output_model_path", None,
|
39 |
-
"Path to save the sentencepiece model.")
|
40 |
-
flags.mark_flag_as_required("output_model_path")
|
41 |
-
|
42 |
-
flags.DEFINE_string("tfds_dir", None, "Directory of the tfds.")
|
43 |
-
flags.DEFINE_string("tfds_name", "wmt14_translate/de-en",
|
44 |
-
"Name of the dataset we generate vacabulay from.")
|
45 |
-
flags.DEFINE_string("tfds_split", "train", "Split of the dataset.")
|
46 |
-
flags.DEFINE_integer("vocab_size", 32000, "Size of vocabulary.")
|
47 |
-
flags.DEFINE_integer(
|
48 |
-
"max_char", -1,
|
49 |
-
"Maximum number of characters to use. "
|
50 |
-
"If a non-positive number is provided, all sentences are used.")
|
51 |
-
flags.DEFINE_string("model_type", "bpe",
|
52 |
-
"Model algorithm: unigram, bpe, word or char.")
|
53 |
-
flags.DEFINE_float("character_coverage", 0.9995,
|
54 |
-
"Character coverage to determine the minimum symbols")
|
55 |
-
flags.DEFINE_list(
|
56 |
-
"data_keys", ["en", "de"],
|
57 |
-
"Comma-separated list of keys to use for training the vocabulary.")
|
58 |
-
|
59 |
-
|
60 |
-
def dump_chars_to_textfile(dataset: tf.data.Dataset,
|
61 |
-
data_keys: Tuple[str],
|
62 |
-
max_char: int = -1):
|
63 |
-
"""Write part of a TFDS sentence dataset to lines in a text file.
|
64 |
-
|
65 |
-
Args:
|
66 |
-
dataset: tf.dataset containing string-data.
|
67 |
-
data_keys: what keys in dataset to dump from.
|
68 |
-
max_char: max character to dump to text file.
|
69 |
-
|
70 |
-
Returns:
|
71 |
-
name of temp file with dataset bytes, exact number of characters dumped.
|
72 |
-
"""
|
73 |
-
ds_iter = dataset.as_numpy_iterator()
|
74 |
-
with tempfile.NamedTemporaryFile(delete=False) as outfp:
|
75 |
-
char_count = 0
|
76 |
-
while True:
|
77 |
-
example = next(ds_iter, None)
|
78 |
-
if example is None or (
|
79 |
-
max_char > 0 and char_count > max_char):
|
80 |
-
break
|
81 |
-
for k in data_keys:
|
82 |
-
line = example[k] + b"\n"
|
83 |
-
char_count += len(line)
|
84 |
-
outfp.write(line)
|
85 |
-
return outfp.name
|
86 |
-
|
87 |
-
|
88 |
-
def train_sentencepiece(
|
89 |
-
file_path: str,
|
90 |
-
model_path: str,
|
91 |
-
vocab_size: int,
|
92 |
-
character_coverage: float,
|
93 |
-
model_type: str):
|
94 |
-
"""Train SentencePiece tokenizer from subset of tf dataset.
|
95 |
-
|
96 |
-
Args:
|
97 |
-
file_path: path of data to train sentencepiece.
|
98 |
-
model_path: path of model file to save vocab model to.
|
99 |
-
vocab_size: size of vocab tokens to train.
|
100 |
-
character_coverage: amount of characters covered by the model, good defaults
|
101 |
-
are 0.9995 for languages with rich character set like Japanese or Chinese
|
102 |
-
and 1.0 for other languages with small character set.
|
103 |
-
model_type: type of sentencepiece vocab to train.
|
104 |
-
|
105 |
-
Returns:
|
106 |
-
path to the trained sentencepiece vocabulary model.
|
107 |
-
"""
|
108 |
-
argstr = " ".join([
|
109 |
-
f"--input={file_path}", f"--vocab_size={vocab_size}",
|
110 |
-
f"--character_coverage={character_coverage}",
|
111 |
-
f"--model_prefix={model_path}", f"--model_type={model_type}",
|
112 |
-
"--bos_id=-1", "--pad_id=0", "--eos_id=1", "--unk_id=2"
|
113 |
-
])
|
114 |
-
SentencePieceTrainer.Train(argstr)
|
115 |
-
|
116 |
-
|
117 |
-
def main(argv: List[str]):
|
118 |
-
del argv
|
119 |
-
builder = tfds.builder(FLAGS.tfds_name, data_dir=FLAGS.tfds_dir)
|
120 |
-
ds = builder.as_dataset(split=FLAGS.tfds_split)
|
121 |
-
tmp_filename = dump_chars_to_textfile(ds, FLAGS.data_keys, FLAGS.max_char)
|
122 |
-
logging.info("Sentencepiece model will be placed here: %s",
|
123 |
-
FLAGS.output_model_path)
|
124 |
-
train_sentencepiece(tmp_filename,
|
125 |
-
FLAGS.output_model_path,
|
126 |
-
FLAGS.vocab_size,
|
127 |
-
FLAGS.character_coverage,
|
128 |
-
FLAGS.model_type)
|
129 |
-
os.remove(tmp_filename)
|
130 |
-
|
131 |
-
|
132 |
-
if __name__ == "__main__":
|
133 |
-
app.run(main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|