Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete squad_lib.py
Browse files- squad_lib.py +0 -975
squad_lib.py
DELETED
@@ -1,975 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Library to process data for SQuAD 1.1 and SQuAD 2.0."""
|
16 |
-
# pylint: disable=g-bad-import-order
|
17 |
-
import collections
|
18 |
-
import copy
|
19 |
-
import json
|
20 |
-
import math
|
21 |
-
import os
|
22 |
-
|
23 |
-
import six
|
24 |
-
|
25 |
-
from absl import logging
|
26 |
-
import tensorflow as tf, tf_keras
|
27 |
-
|
28 |
-
from official.nlp.tools import tokenization
|
29 |
-
|
30 |
-
|
31 |
-
class SquadExample(object):
|
32 |
-
"""A single training/test example for simple sequence classification.
|
33 |
-
|
34 |
-
For examples without an answer, the start and end position are -1.
|
35 |
-
|
36 |
-
Attributes:
|
37 |
-
qas_id: ID of the question-answer pair.
|
38 |
-
question_text: Original text for the question.
|
39 |
-
doc_tokens: The list of tokens in the context obtained by splitting on
|
40 |
-
whitespace only.
|
41 |
-
orig_answer_text: Original text for the answer.
|
42 |
-
start_position: Starting index of the answer in `doc_tokens`.
|
43 |
-
end_position: Ending index of the answer in `doc_tokens`.
|
44 |
-
is_impossible: Whether the question is impossible to answer given the
|
45 |
-
context. Only used in SQuAD 2.0.
|
46 |
-
"""
|
47 |
-
|
48 |
-
def __init__(self,
|
49 |
-
qas_id,
|
50 |
-
question_text,
|
51 |
-
doc_tokens,
|
52 |
-
orig_answer_text=None,
|
53 |
-
start_position=None,
|
54 |
-
end_position=None,
|
55 |
-
is_impossible=False):
|
56 |
-
self.qas_id = qas_id
|
57 |
-
self.question_text = question_text
|
58 |
-
self.doc_tokens = doc_tokens
|
59 |
-
self.orig_answer_text = orig_answer_text
|
60 |
-
self.start_position = start_position
|
61 |
-
self.end_position = end_position
|
62 |
-
self.is_impossible = is_impossible
|
63 |
-
|
64 |
-
def __str__(self):
|
65 |
-
return self.__repr__()
|
66 |
-
|
67 |
-
def __repr__(self):
|
68 |
-
s = ""
|
69 |
-
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
|
70 |
-
s += ", question_text: %s" % (
|
71 |
-
tokenization.printable_text(self.question_text))
|
72 |
-
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
|
73 |
-
if self.start_position:
|
74 |
-
s += ", start_position: %d" % (self.start_position)
|
75 |
-
if self.start_position:
|
76 |
-
s += ", end_position: %d" % (self.end_position)
|
77 |
-
if self.start_position:
|
78 |
-
s += ", is_impossible: %r" % (self.is_impossible)
|
79 |
-
return s
|
80 |
-
|
81 |
-
|
82 |
-
class InputFeatures(object):
|
83 |
-
"""A single set of features of data."""
|
84 |
-
|
85 |
-
def __init__(self,
|
86 |
-
unique_id,
|
87 |
-
example_index,
|
88 |
-
doc_span_index,
|
89 |
-
tokens,
|
90 |
-
token_to_orig_map,
|
91 |
-
token_is_max_context,
|
92 |
-
input_ids,
|
93 |
-
input_mask,
|
94 |
-
segment_ids,
|
95 |
-
paragraph_mask=None,
|
96 |
-
class_index=None,
|
97 |
-
start_position=None,
|
98 |
-
end_position=None,
|
99 |
-
is_impossible=None):
|
100 |
-
self.unique_id = unique_id
|
101 |
-
self.example_index = example_index
|
102 |
-
self.doc_span_index = doc_span_index
|
103 |
-
self.tokens = tokens
|
104 |
-
self.token_to_orig_map = token_to_orig_map
|
105 |
-
self.token_is_max_context = token_is_max_context
|
106 |
-
self.input_ids = input_ids
|
107 |
-
self.input_mask = input_mask
|
108 |
-
self.segment_ids = segment_ids
|
109 |
-
self.start_position = start_position
|
110 |
-
self.end_position = end_position
|
111 |
-
self.is_impossible = is_impossible
|
112 |
-
self.paragraph_mask = paragraph_mask
|
113 |
-
self.class_index = class_index
|
114 |
-
|
115 |
-
|
116 |
-
class FeatureWriter(object):
|
117 |
-
"""Writes InputFeature to TF example file."""
|
118 |
-
|
119 |
-
def __init__(self, filename, is_training):
|
120 |
-
self.filename = filename
|
121 |
-
self.is_training = is_training
|
122 |
-
self.num_features = 0
|
123 |
-
tf.io.gfile.makedirs(os.path.dirname(filename))
|
124 |
-
self._writer = tf.io.TFRecordWriter(filename)
|
125 |
-
|
126 |
-
def process_feature(self, feature):
|
127 |
-
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
|
128 |
-
self.num_features += 1
|
129 |
-
|
130 |
-
def create_int_feature(values):
|
131 |
-
feature = tf.train.Feature(
|
132 |
-
int64_list=tf.train.Int64List(value=list(values)))
|
133 |
-
return feature
|
134 |
-
|
135 |
-
features = collections.OrderedDict()
|
136 |
-
features["unique_ids"] = create_int_feature([feature.unique_id])
|
137 |
-
features["input_ids"] = create_int_feature(feature.input_ids)
|
138 |
-
features["input_mask"] = create_int_feature(feature.input_mask)
|
139 |
-
features["segment_ids"] = create_int_feature(feature.segment_ids)
|
140 |
-
|
141 |
-
if feature.paragraph_mask is not None:
|
142 |
-
features["paragraph_mask"] = create_int_feature(feature.paragraph_mask)
|
143 |
-
if feature.class_index is not None:
|
144 |
-
features["class_index"] = create_int_feature([feature.class_index])
|
145 |
-
|
146 |
-
if self.is_training:
|
147 |
-
features["start_positions"] = create_int_feature([feature.start_position])
|
148 |
-
features["end_positions"] = create_int_feature([feature.end_position])
|
149 |
-
impossible = 0
|
150 |
-
if feature.is_impossible:
|
151 |
-
impossible = 1
|
152 |
-
features["is_impossible"] = create_int_feature([impossible])
|
153 |
-
|
154 |
-
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
|
155 |
-
self._writer.write(tf_example.SerializeToString())
|
156 |
-
|
157 |
-
def close(self):
|
158 |
-
self._writer.close()
|
159 |
-
|
160 |
-
|
161 |
-
def read_squad_examples(input_file, is_training,
|
162 |
-
version_2_with_negative,
|
163 |
-
translated_input_folder=None):
|
164 |
-
"""Read a SQuAD json file into a list of SquadExample."""
|
165 |
-
with tf.io.gfile.GFile(input_file, "r") as reader:
|
166 |
-
input_data = json.load(reader)["data"]
|
167 |
-
|
168 |
-
if translated_input_folder is not None:
|
169 |
-
translated_files = tf.io.gfile.glob(
|
170 |
-
os.path.join(translated_input_folder, "*.json"))
|
171 |
-
for file in translated_files:
|
172 |
-
with tf.io.gfile.GFile(file, "r") as reader:
|
173 |
-
input_data.extend(json.load(reader)["data"])
|
174 |
-
|
175 |
-
def is_whitespace(c):
|
176 |
-
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
|
177 |
-
return True
|
178 |
-
return False
|
179 |
-
|
180 |
-
examples = []
|
181 |
-
for entry in input_data:
|
182 |
-
for paragraph in entry["paragraphs"]:
|
183 |
-
paragraph_text = paragraph["context"]
|
184 |
-
doc_tokens = []
|
185 |
-
char_to_word_offset = []
|
186 |
-
prev_is_whitespace = True
|
187 |
-
for c in paragraph_text:
|
188 |
-
if is_whitespace(c):
|
189 |
-
prev_is_whitespace = True
|
190 |
-
else:
|
191 |
-
if prev_is_whitespace:
|
192 |
-
doc_tokens.append(c)
|
193 |
-
else:
|
194 |
-
doc_tokens[-1] += c
|
195 |
-
prev_is_whitespace = False
|
196 |
-
char_to_word_offset.append(len(doc_tokens) - 1)
|
197 |
-
|
198 |
-
for qa in paragraph["qas"]:
|
199 |
-
qas_id = qa["id"]
|
200 |
-
question_text = qa["question"]
|
201 |
-
start_position = None
|
202 |
-
end_position = None
|
203 |
-
orig_answer_text = None
|
204 |
-
is_impossible = False
|
205 |
-
if is_training:
|
206 |
-
|
207 |
-
if version_2_with_negative:
|
208 |
-
is_impossible = qa["is_impossible"]
|
209 |
-
if (len(qa["answers"]) != 1) and (not is_impossible):
|
210 |
-
raise ValueError(
|
211 |
-
"For training, each question should have exactly 1 answer.")
|
212 |
-
if not is_impossible:
|
213 |
-
answer = qa["answers"][0]
|
214 |
-
orig_answer_text = answer["text"]
|
215 |
-
answer_offset = answer["answer_start"]
|
216 |
-
answer_length = len(orig_answer_text)
|
217 |
-
start_position = char_to_word_offset[answer_offset]
|
218 |
-
end_position = char_to_word_offset[answer_offset + answer_length -
|
219 |
-
1]
|
220 |
-
# Only add answers where the text can be exactly recovered from the
|
221 |
-
# document. If this CAN'T happen it's likely due to weird Unicode
|
222 |
-
# stuff so we will just skip the example.
|
223 |
-
#
|
224 |
-
# Note that this means for training mode, every example is NOT
|
225 |
-
# guaranteed to be preserved.
|
226 |
-
actual_text = " ".join(doc_tokens[start_position:(end_position +
|
227 |
-
1)])
|
228 |
-
cleaned_answer_text = " ".join(
|
229 |
-
tokenization.whitespace_tokenize(orig_answer_text))
|
230 |
-
if actual_text.find(cleaned_answer_text) == -1:
|
231 |
-
logging.warning("Could not find answer: '%s' vs. '%s'",
|
232 |
-
actual_text, cleaned_answer_text)
|
233 |
-
continue
|
234 |
-
else:
|
235 |
-
start_position = -1
|
236 |
-
end_position = -1
|
237 |
-
orig_answer_text = ""
|
238 |
-
|
239 |
-
example = SquadExample(
|
240 |
-
qas_id=qas_id,
|
241 |
-
question_text=question_text,
|
242 |
-
doc_tokens=doc_tokens,
|
243 |
-
orig_answer_text=orig_answer_text,
|
244 |
-
start_position=start_position,
|
245 |
-
end_position=end_position,
|
246 |
-
is_impossible=is_impossible)
|
247 |
-
examples.append(example)
|
248 |
-
|
249 |
-
return examples
|
250 |
-
|
251 |
-
|
252 |
-
def convert_examples_to_features(examples,
|
253 |
-
tokenizer,
|
254 |
-
max_seq_length,
|
255 |
-
doc_stride,
|
256 |
-
max_query_length,
|
257 |
-
is_training,
|
258 |
-
output_fn,
|
259 |
-
xlnet_format=False,
|
260 |
-
batch_size=None):
|
261 |
-
"""Loads a data file into a list of `InputBatch`s."""
|
262 |
-
|
263 |
-
base_id = 1000000000
|
264 |
-
unique_id = base_id
|
265 |
-
feature = None
|
266 |
-
for (example_index, example) in enumerate(examples):
|
267 |
-
query_tokens = tokenizer.tokenize(example.question_text)
|
268 |
-
|
269 |
-
if len(query_tokens) > max_query_length:
|
270 |
-
query_tokens = query_tokens[0:max_query_length]
|
271 |
-
|
272 |
-
tok_to_orig_index = []
|
273 |
-
orig_to_tok_index = []
|
274 |
-
all_doc_tokens = []
|
275 |
-
for (i, token) in enumerate(example.doc_tokens):
|
276 |
-
orig_to_tok_index.append(len(all_doc_tokens))
|
277 |
-
sub_tokens = tokenizer.tokenize(token)
|
278 |
-
for sub_token in sub_tokens:
|
279 |
-
tok_to_orig_index.append(i)
|
280 |
-
all_doc_tokens.append(sub_token)
|
281 |
-
|
282 |
-
tok_start_position = None
|
283 |
-
tok_end_position = None
|
284 |
-
if is_training and example.is_impossible:
|
285 |
-
tok_start_position = -1
|
286 |
-
tok_end_position = -1
|
287 |
-
if is_training and not example.is_impossible:
|
288 |
-
tok_start_position = orig_to_tok_index[example.start_position]
|
289 |
-
if example.end_position < len(example.doc_tokens) - 1:
|
290 |
-
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
|
291 |
-
else:
|
292 |
-
tok_end_position = len(all_doc_tokens) - 1
|
293 |
-
(tok_start_position, tok_end_position) = _improve_answer_span(
|
294 |
-
all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
|
295 |
-
example.orig_answer_text)
|
296 |
-
|
297 |
-
# The -3 accounts for [CLS], [SEP] and [SEP]
|
298 |
-
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
|
299 |
-
|
300 |
-
# We can have documents that are longer than the maximum sequence length.
|
301 |
-
# To deal with this we do a sliding window approach, where we take chunks
|
302 |
-
# of the up to our max length with a stride of `doc_stride`.
|
303 |
-
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
|
304 |
-
"DocSpan", ["start", "length"])
|
305 |
-
doc_spans = []
|
306 |
-
start_offset = 0
|
307 |
-
while start_offset < len(all_doc_tokens):
|
308 |
-
length = len(all_doc_tokens) - start_offset
|
309 |
-
if length > max_tokens_for_doc:
|
310 |
-
length = max_tokens_for_doc
|
311 |
-
doc_spans.append(_DocSpan(start=start_offset, length=length))
|
312 |
-
if start_offset + length == len(all_doc_tokens):
|
313 |
-
break
|
314 |
-
start_offset += min(length, doc_stride)
|
315 |
-
|
316 |
-
for (doc_span_index, doc_span) in enumerate(doc_spans):
|
317 |
-
tokens = []
|
318 |
-
token_to_orig_map = {}
|
319 |
-
token_is_max_context = {}
|
320 |
-
segment_ids = []
|
321 |
-
|
322 |
-
# Paragraph mask used in XLNet.
|
323 |
-
# 1 represents paragraph and class tokens.
|
324 |
-
# 0 represents query and other special tokens.
|
325 |
-
paragraph_mask = []
|
326 |
-
|
327 |
-
# pylint: disable=cell-var-from-loop
|
328 |
-
def process_query(seg_q):
|
329 |
-
for token in query_tokens:
|
330 |
-
tokens.append(token)
|
331 |
-
segment_ids.append(seg_q)
|
332 |
-
paragraph_mask.append(0)
|
333 |
-
tokens.append("[SEP]")
|
334 |
-
segment_ids.append(seg_q)
|
335 |
-
paragraph_mask.append(0)
|
336 |
-
|
337 |
-
def process_paragraph(seg_p):
|
338 |
-
for i in range(doc_span.length):
|
339 |
-
split_token_index = doc_span.start + i
|
340 |
-
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
|
341 |
-
|
342 |
-
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
|
343 |
-
split_token_index)
|
344 |
-
token_is_max_context[len(tokens)] = is_max_context
|
345 |
-
tokens.append(all_doc_tokens[split_token_index])
|
346 |
-
segment_ids.append(seg_p)
|
347 |
-
paragraph_mask.append(1)
|
348 |
-
tokens.append("[SEP]")
|
349 |
-
segment_ids.append(seg_p)
|
350 |
-
paragraph_mask.append(0)
|
351 |
-
|
352 |
-
def process_class(seg_class):
|
353 |
-
class_index = len(segment_ids)
|
354 |
-
tokens.append("[CLS]")
|
355 |
-
segment_ids.append(seg_class)
|
356 |
-
paragraph_mask.append(1)
|
357 |
-
return class_index
|
358 |
-
|
359 |
-
if xlnet_format:
|
360 |
-
seg_p, seg_q, seg_class, seg_pad = 0, 1, 2, 3
|
361 |
-
process_paragraph(seg_p)
|
362 |
-
process_query(seg_q)
|
363 |
-
class_index = process_class(seg_class)
|
364 |
-
else:
|
365 |
-
seg_p, seg_q, seg_class, seg_pad = 1, 0, 0, 0
|
366 |
-
class_index = process_class(seg_class)
|
367 |
-
process_query(seg_q)
|
368 |
-
process_paragraph(seg_p)
|
369 |
-
|
370 |
-
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
371 |
-
|
372 |
-
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
373 |
-
# tokens are attended to.
|
374 |
-
input_mask = [1] * len(input_ids)
|
375 |
-
|
376 |
-
# Zero-pad up to the sequence length.
|
377 |
-
while len(input_ids) < max_seq_length:
|
378 |
-
input_ids.append(0)
|
379 |
-
input_mask.append(0)
|
380 |
-
segment_ids.append(seg_pad)
|
381 |
-
paragraph_mask.append(0)
|
382 |
-
|
383 |
-
assert len(input_ids) == max_seq_length
|
384 |
-
assert len(input_mask) == max_seq_length
|
385 |
-
assert len(segment_ids) == max_seq_length
|
386 |
-
assert len(paragraph_mask) == max_seq_length
|
387 |
-
|
388 |
-
start_position = 0
|
389 |
-
end_position = 0
|
390 |
-
span_contains_answer = False
|
391 |
-
|
392 |
-
if is_training and not example.is_impossible:
|
393 |
-
# For training, if our document chunk does not contain an annotation
|
394 |
-
# we throw it out, since there is nothing to predict.
|
395 |
-
doc_start = doc_span.start
|
396 |
-
doc_end = doc_span.start + doc_span.length - 1
|
397 |
-
span_contains_answer = (tok_start_position >= doc_start and
|
398 |
-
tok_end_position <= doc_end)
|
399 |
-
if span_contains_answer:
|
400 |
-
doc_offset = 0 if xlnet_format else len(query_tokens) + 2
|
401 |
-
start_position = tok_start_position - doc_start + doc_offset
|
402 |
-
end_position = tok_end_position - doc_start + doc_offset
|
403 |
-
|
404 |
-
if example_index < 20:
|
405 |
-
logging.info("*** Example ***")
|
406 |
-
logging.info("unique_id: %s", (unique_id))
|
407 |
-
logging.info("example_index: %s", (example_index))
|
408 |
-
logging.info("doc_span_index: %s", (doc_span_index))
|
409 |
-
logging.info("tokens: %s",
|
410 |
-
" ".join([tokenization.printable_text(x) for x in tokens]))
|
411 |
-
logging.info(
|
412 |
-
"token_to_orig_map: %s", " ".join([
|
413 |
-
"%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)
|
414 |
-
]))
|
415 |
-
logging.info(
|
416 |
-
"token_is_max_context: %s", " ".join([
|
417 |
-
"%d:%s" % (x, y)
|
418 |
-
for (x, y) in six.iteritems(token_is_max_context)
|
419 |
-
]))
|
420 |
-
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
|
421 |
-
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
|
422 |
-
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
|
423 |
-
logging.info("paragraph_mask: %s", " ".join(
|
424 |
-
[str(x) for x in paragraph_mask]))
|
425 |
-
logging.info("class_index: %d", class_index)
|
426 |
-
if is_training:
|
427 |
-
if span_contains_answer:
|
428 |
-
answer_text = " ".join(tokens[start_position:(end_position + 1)])
|
429 |
-
logging.info("start_position: %d", (start_position))
|
430 |
-
logging.info("end_position: %d", (end_position))
|
431 |
-
logging.info("answer: %s", tokenization.printable_text(answer_text))
|
432 |
-
else:
|
433 |
-
logging.info("document span doesn't contain answer")
|
434 |
-
|
435 |
-
feature = InputFeatures(
|
436 |
-
unique_id=unique_id,
|
437 |
-
example_index=example_index,
|
438 |
-
doc_span_index=doc_span_index,
|
439 |
-
tokens=tokens,
|
440 |
-
paragraph_mask=paragraph_mask,
|
441 |
-
class_index=class_index,
|
442 |
-
token_to_orig_map=token_to_orig_map,
|
443 |
-
token_is_max_context=token_is_max_context,
|
444 |
-
input_ids=input_ids,
|
445 |
-
input_mask=input_mask,
|
446 |
-
segment_ids=segment_ids,
|
447 |
-
start_position=start_position,
|
448 |
-
end_position=end_position,
|
449 |
-
is_impossible=not span_contains_answer)
|
450 |
-
|
451 |
-
# Run callback
|
452 |
-
if is_training:
|
453 |
-
output_fn(feature)
|
454 |
-
else:
|
455 |
-
output_fn(feature, is_padding=False)
|
456 |
-
|
457 |
-
unique_id += 1
|
458 |
-
|
459 |
-
if not is_training and feature:
|
460 |
-
assert batch_size
|
461 |
-
num_padding = 0
|
462 |
-
num_examples = unique_id - base_id
|
463 |
-
if unique_id % batch_size != 0:
|
464 |
-
num_padding = batch_size - (num_examples % batch_size)
|
465 |
-
logging.info("Adding padding examples to make sure no partial batch.")
|
466 |
-
logging.info("Adds %d padding examples for inference.", num_padding)
|
467 |
-
dummy_feature = copy.deepcopy(feature)
|
468 |
-
for _ in range(num_padding):
|
469 |
-
dummy_feature.unique_id = unique_id
|
470 |
-
|
471 |
-
# Run callback
|
472 |
-
output_fn(feature, is_padding=True)
|
473 |
-
unique_id += 1
|
474 |
-
return unique_id - base_id
|
475 |
-
|
476 |
-
|
477 |
-
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
|
478 |
-
orig_answer_text):
|
479 |
-
"""Returns tokenized answer spans that better match the annotated answer."""
|
480 |
-
|
481 |
-
# The SQuAD annotations are character based. We first project them to
|
482 |
-
# whitespace-tokenized words. But then after WordPiece tokenization, we can
|
483 |
-
# often find a "better match". For example:
|
484 |
-
#
|
485 |
-
# Question: What year was John Smith born?
|
486 |
-
# Context: The leader was John Smith (1895-1943).
|
487 |
-
# Answer: 1895
|
488 |
-
#
|
489 |
-
# The original whitespace-tokenized answer will be "(1895-1943).". However
|
490 |
-
# after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
|
491 |
-
# the exact answer, 1895.
|
492 |
-
#
|
493 |
-
# However, this is not always possible. Consider the following:
|
494 |
-
#
|
495 |
-
# Question: What country is the top exporter of electronics?
|
496 |
-
# Context: The Japanese electronics industry is the lagest in the world.
|
497 |
-
# Answer: Japan
|
498 |
-
#
|
499 |
-
# In this case, the annotator chose "Japan" as a character sub-span of
|
500 |
-
# the word "Japanese". Since our WordPiece tokenizer does not split
|
501 |
-
# "Japanese", we just use "Japanese" as the annotation. This is fairly rare
|
502 |
-
# in SQuAD, but does happen.
|
503 |
-
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
|
504 |
-
|
505 |
-
for new_start in range(input_start, input_end + 1):
|
506 |
-
for new_end in range(input_end, new_start - 1, -1):
|
507 |
-
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
|
508 |
-
if text_span == tok_answer_text:
|
509 |
-
return (new_start, new_end)
|
510 |
-
|
511 |
-
return (input_start, input_end)
|
512 |
-
|
513 |
-
|
514 |
-
def _check_is_max_context(doc_spans, cur_span_index, position):
|
515 |
-
"""Check if this is the 'max context' doc span for the token."""
|
516 |
-
|
517 |
-
# Because of the sliding window approach taken to scoring documents, a single
|
518 |
-
# token can appear in multiple documents. E.g.
|
519 |
-
# Doc: the man went to the store and bought a gallon of milk
|
520 |
-
# Span A: the man went to the
|
521 |
-
# Span B: to the store and bought
|
522 |
-
# Span C: and bought a gallon of
|
523 |
-
# ...
|
524 |
-
#
|
525 |
-
# Now the word 'bought' will have two scores from spans B and C. We only
|
526 |
-
# want to consider the score with "maximum context", which we define as
|
527 |
-
# the *minimum* of its left and right context (the *sum* of left and
|
528 |
-
# right context will always be the same, of course).
|
529 |
-
#
|
530 |
-
# In the example the maximum context for 'bought' would be span C since
|
531 |
-
# it has 1 left context and 3 right context, while span B has 4 left context
|
532 |
-
# and 0 right context.
|
533 |
-
best_score = None
|
534 |
-
best_span_index = None
|
535 |
-
for (span_index, doc_span) in enumerate(doc_spans):
|
536 |
-
end = doc_span.start + doc_span.length - 1
|
537 |
-
if position < doc_span.start:
|
538 |
-
continue
|
539 |
-
if position > end:
|
540 |
-
continue
|
541 |
-
num_left_context = position - doc_span.start
|
542 |
-
num_right_context = end - position
|
543 |
-
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
|
544 |
-
if best_score is None or score > best_score:
|
545 |
-
best_score = score
|
546 |
-
best_span_index = span_index
|
547 |
-
|
548 |
-
return cur_span_index == best_span_index
|
549 |
-
|
550 |
-
|
551 |
-
def write_predictions(all_examples,
|
552 |
-
all_features,
|
553 |
-
all_results,
|
554 |
-
n_best_size,
|
555 |
-
max_answer_length,
|
556 |
-
do_lower_case,
|
557 |
-
output_prediction_file,
|
558 |
-
output_nbest_file,
|
559 |
-
output_null_log_odds_file,
|
560 |
-
version_2_with_negative=False,
|
561 |
-
null_score_diff_threshold=0.0,
|
562 |
-
verbose=False):
|
563 |
-
"""Write final predictions to the json file and log-odds of null if needed."""
|
564 |
-
logging.info("Writing predictions to: %s", (output_prediction_file))
|
565 |
-
logging.info("Writing nbest to: %s", (output_nbest_file))
|
566 |
-
|
567 |
-
all_predictions, all_nbest_json, scores_diff_json = (
|
568 |
-
postprocess_output(
|
569 |
-
all_examples=all_examples,
|
570 |
-
all_features=all_features,
|
571 |
-
all_results=all_results,
|
572 |
-
n_best_size=n_best_size,
|
573 |
-
max_answer_length=max_answer_length,
|
574 |
-
do_lower_case=do_lower_case,
|
575 |
-
version_2_with_negative=version_2_with_negative,
|
576 |
-
null_score_diff_threshold=null_score_diff_threshold,
|
577 |
-
verbose=verbose))
|
578 |
-
|
579 |
-
write_to_json_files(all_predictions, output_prediction_file)
|
580 |
-
write_to_json_files(all_nbest_json, output_nbest_file)
|
581 |
-
if version_2_with_negative:
|
582 |
-
write_to_json_files(scores_diff_json, output_null_log_odds_file)
|
583 |
-
|
584 |
-
|
585 |
-
def postprocess_output(all_examples,
|
586 |
-
all_features,
|
587 |
-
all_results,
|
588 |
-
n_best_size,
|
589 |
-
max_answer_length,
|
590 |
-
do_lower_case,
|
591 |
-
version_2_with_negative=False,
|
592 |
-
null_score_diff_threshold=0.0,
|
593 |
-
xlnet_format=False,
|
594 |
-
verbose=False):
|
595 |
-
"""Postprocess model output, to form predicton results."""
|
596 |
-
|
597 |
-
example_index_to_features = collections.defaultdict(list)
|
598 |
-
for feature in all_features:
|
599 |
-
example_index_to_features[feature.example_index].append(feature)
|
600 |
-
unique_id_to_result = {}
|
601 |
-
for result in all_results:
|
602 |
-
unique_id_to_result[result.unique_id] = result
|
603 |
-
|
604 |
-
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
|
605 |
-
"PrelimPrediction",
|
606 |
-
["feature_index", "start_index", "end_index", "start_logit", "end_logit"])
|
607 |
-
|
608 |
-
all_predictions = collections.OrderedDict()
|
609 |
-
all_nbest_json = collections.OrderedDict()
|
610 |
-
scores_diff_json = collections.OrderedDict()
|
611 |
-
|
612 |
-
for (example_index, example) in enumerate(all_examples):
|
613 |
-
features = example_index_to_features[example_index]
|
614 |
-
|
615 |
-
prelim_predictions = []
|
616 |
-
# keep track of the minimum score of null start+end of position 0
|
617 |
-
score_null = 1000000 # large and positive
|
618 |
-
min_null_feature_index = 0 # the paragraph slice with min mull score
|
619 |
-
null_start_logit = 0 # the start logit at the slice with min null score
|
620 |
-
null_end_logit = 0 # the end logit at the slice with min null score
|
621 |
-
for (feature_index, feature) in enumerate(features):
|
622 |
-
if feature.unique_id not in unique_id_to_result:
|
623 |
-
logging.info("Skip eval example %s, not in pred.", feature.unique_id)
|
624 |
-
continue
|
625 |
-
result = unique_id_to_result[feature.unique_id]
|
626 |
-
|
627 |
-
# if we could have irrelevant answers, get the min score of irrelevant
|
628 |
-
if version_2_with_negative:
|
629 |
-
if xlnet_format:
|
630 |
-
feature_null_score = result.class_logits
|
631 |
-
else:
|
632 |
-
feature_null_score = result.start_logits[0] + result.end_logits[0]
|
633 |
-
if feature_null_score < score_null:
|
634 |
-
score_null = feature_null_score
|
635 |
-
min_null_feature_index = feature_index
|
636 |
-
null_start_logit = result.start_logits[0]
|
637 |
-
null_end_logit = result.end_logits[0]
|
638 |
-
for (start_index, start_logit,
|
639 |
-
end_index, end_logit) in _get_best_indexes_and_logits(
|
640 |
-
result=result,
|
641 |
-
n_best_size=n_best_size,
|
642 |
-
xlnet_format=xlnet_format):
|
643 |
-
# We could hypothetically create invalid predictions, e.g., predict
|
644 |
-
# that the start of the span is in the question. We throw out all
|
645 |
-
# invalid predictions.
|
646 |
-
if start_index >= len(feature.tokens):
|
647 |
-
continue
|
648 |
-
if end_index >= len(feature.tokens):
|
649 |
-
continue
|
650 |
-
if start_index not in feature.token_to_orig_map:
|
651 |
-
continue
|
652 |
-
if end_index not in feature.token_to_orig_map:
|
653 |
-
continue
|
654 |
-
if not feature.token_is_max_context.get(start_index, False):
|
655 |
-
continue
|
656 |
-
if end_index < start_index:
|
657 |
-
continue
|
658 |
-
length = end_index - start_index + 1
|
659 |
-
if length > max_answer_length:
|
660 |
-
continue
|
661 |
-
prelim_predictions.append(
|
662 |
-
_PrelimPrediction(
|
663 |
-
feature_index=feature_index,
|
664 |
-
start_index=start_index,
|
665 |
-
end_index=end_index,
|
666 |
-
start_logit=start_logit,
|
667 |
-
end_logit=end_logit))
|
668 |
-
|
669 |
-
if version_2_with_negative and not xlnet_format:
|
670 |
-
prelim_predictions.append(
|
671 |
-
_PrelimPrediction(
|
672 |
-
feature_index=min_null_feature_index,
|
673 |
-
start_index=0,
|
674 |
-
end_index=0,
|
675 |
-
start_logit=null_start_logit,
|
676 |
-
end_logit=null_end_logit))
|
677 |
-
prelim_predictions = sorted(
|
678 |
-
prelim_predictions,
|
679 |
-
key=lambda x: (x.start_logit + x.end_logit),
|
680 |
-
reverse=True)
|
681 |
-
|
682 |
-
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
|
683 |
-
"NbestPrediction", ["text", "start_logit", "end_logit"])
|
684 |
-
|
685 |
-
seen_predictions = {}
|
686 |
-
nbest = []
|
687 |
-
for pred in prelim_predictions:
|
688 |
-
if len(nbest) >= n_best_size:
|
689 |
-
break
|
690 |
-
feature = features[pred.feature_index]
|
691 |
-
if pred.start_index > 0 or xlnet_format: # this is a non-null prediction
|
692 |
-
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
|
693 |
-
orig_doc_start = feature.token_to_orig_map[pred.start_index]
|
694 |
-
orig_doc_end = feature.token_to_orig_map[pred.end_index]
|
695 |
-
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
|
696 |
-
tok_text = " ".join(tok_tokens)
|
697 |
-
|
698 |
-
# De-tokenize WordPieces that have been split off.
|
699 |
-
tok_text = tok_text.replace(" ##", "")
|
700 |
-
tok_text = tok_text.replace("##", "")
|
701 |
-
|
702 |
-
# Clean whitespace
|
703 |
-
tok_text = tok_text.strip()
|
704 |
-
tok_text = " ".join(tok_text.split())
|
705 |
-
orig_text = " ".join(orig_tokens)
|
706 |
-
|
707 |
-
final_text = get_final_text(
|
708 |
-
tok_text, orig_text, do_lower_case, verbose=verbose)
|
709 |
-
if final_text in seen_predictions:
|
710 |
-
continue
|
711 |
-
|
712 |
-
seen_predictions[final_text] = True
|
713 |
-
else:
|
714 |
-
final_text = ""
|
715 |
-
seen_predictions[final_text] = True
|
716 |
-
|
717 |
-
nbest.append(
|
718 |
-
_NbestPrediction(
|
719 |
-
text=final_text,
|
720 |
-
start_logit=pred.start_logit,
|
721 |
-
end_logit=pred.end_logit))
|
722 |
-
|
723 |
-
# if we didn't include the empty option in the n-best, include it
|
724 |
-
if version_2_with_negative and not xlnet_format:
|
725 |
-
if "" not in seen_predictions:
|
726 |
-
nbest.append(
|
727 |
-
_NbestPrediction(
|
728 |
-
text="", start_logit=null_start_logit,
|
729 |
-
end_logit=null_end_logit))
|
730 |
-
# In very rare edge cases we could have no valid predictions. So we
|
731 |
-
# just create a nonce prediction in this case to avoid failure.
|
732 |
-
if not nbest:
|
733 |
-
nbest.append(
|
734 |
-
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
|
735 |
-
|
736 |
-
assert len(nbest) >= 1
|
737 |
-
|
738 |
-
total_scores = []
|
739 |
-
best_non_null_entry = None
|
740 |
-
for entry in nbest:
|
741 |
-
total_scores.append(entry.start_logit + entry.end_logit)
|
742 |
-
if not best_non_null_entry:
|
743 |
-
if entry.text:
|
744 |
-
best_non_null_entry = entry
|
745 |
-
|
746 |
-
probs = _compute_softmax(total_scores)
|
747 |
-
|
748 |
-
nbest_json = []
|
749 |
-
for (i, entry) in enumerate(nbest):
|
750 |
-
output = collections.OrderedDict()
|
751 |
-
output["text"] = entry.text
|
752 |
-
output["probability"] = probs[i]
|
753 |
-
output["start_logit"] = entry.start_logit
|
754 |
-
output["end_logit"] = entry.end_logit
|
755 |
-
nbest_json.append(output)
|
756 |
-
|
757 |
-
assert len(nbest_json) >= 1
|
758 |
-
|
759 |
-
if not version_2_with_negative:
|
760 |
-
all_predictions[example.qas_id] = nbest_json[0]["text"]
|
761 |
-
else:
|
762 |
-
# pytype: disable=attribute-error
|
763 |
-
# predict "" iff the null score - the score of best non-null > threshold
|
764 |
-
if best_non_null_entry is not None:
|
765 |
-
if xlnet_format:
|
766 |
-
score_diff = score_null
|
767 |
-
scores_diff_json[example.qas_id] = score_diff
|
768 |
-
all_predictions[example.qas_id] = best_non_null_entry.text
|
769 |
-
else:
|
770 |
-
score_diff = score_null - best_non_null_entry.start_logit - (
|
771 |
-
best_non_null_entry.end_logit)
|
772 |
-
scores_diff_json[example.qas_id] = score_diff
|
773 |
-
if score_diff > null_score_diff_threshold:
|
774 |
-
all_predictions[example.qas_id] = ""
|
775 |
-
else:
|
776 |
-
all_predictions[example.qas_id] = best_non_null_entry.text
|
777 |
-
else:
|
778 |
-
logging.warning("best_non_null_entry is None")
|
779 |
-
scores_diff_json[example.qas_id] = score_null
|
780 |
-
all_predictions[example.qas_id] = ""
|
781 |
-
# pytype: enable=attribute-error
|
782 |
-
|
783 |
-
all_nbest_json[example.qas_id] = nbest_json
|
784 |
-
|
785 |
-
return all_predictions, all_nbest_json, scores_diff_json
|
786 |
-
|
787 |
-
|
788 |
-
def write_to_json_files(json_records, json_file):
|
789 |
-
with tf.io.gfile.GFile(json_file, "w") as writer:
|
790 |
-
writer.write(json.dumps(json_records, indent=4) + "\n")
|
791 |
-
|
792 |
-
|
793 |
-
def get_final_text(pred_text, orig_text, do_lower_case, verbose=False):
|
794 |
-
"""Project the tokenized prediction back to the original text."""
|
795 |
-
|
796 |
-
# When we created the data, we kept track of the alignment between original
|
797 |
-
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
|
798 |
-
# now `orig_text` contains the span of our original text corresponding to the
|
799 |
-
# span that we predicted.
|
800 |
-
#
|
801 |
-
# However, `orig_text` may contain extra characters that we don't want in
|
802 |
-
# our prediction.
|
803 |
-
#
|
804 |
-
# For example, let's say:
|
805 |
-
# pred_text = steve smith
|
806 |
-
# orig_text = Steve Smith's
|
807 |
-
#
|
808 |
-
# We don't want to return `orig_text` because it contains the extra "'s".
|
809 |
-
#
|
810 |
-
# We don't want to return `pred_text` because it's already been normalized
|
811 |
-
# (the SQuAD eval script also does punctuation stripping/lower casing but
|
812 |
-
# our tokenizer does additional normalization like stripping accent
|
813 |
-
# characters).
|
814 |
-
#
|
815 |
-
# What we really want to return is "Steve Smith".
|
816 |
-
#
|
817 |
-
# Therefore, we have to apply a semi-complicated alignment heruistic between
|
818 |
-
# `pred_text` and `orig_text` to get a character-to-character alignment. This
|
819 |
-
# can fail in certain cases in which case we just return `orig_text`.
|
820 |
-
|
821 |
-
def _strip_spaces(text):
|
822 |
-
ns_chars = []
|
823 |
-
ns_to_s_map = collections.OrderedDict()
|
824 |
-
for (i, c) in enumerate(text):
|
825 |
-
if c == " ":
|
826 |
-
continue
|
827 |
-
ns_to_s_map[len(ns_chars)] = i
|
828 |
-
ns_chars.append(c)
|
829 |
-
ns_text = "".join(ns_chars)
|
830 |
-
return (ns_text, ns_to_s_map)
|
831 |
-
|
832 |
-
# We first tokenize `orig_text`, strip whitespace from the result
|
833 |
-
# and `pred_text`, and check if they are the same length. If they are
|
834 |
-
# NOT the same length, the heuristic has failed. If they are the same
|
835 |
-
# length, we assume the characters are one-to-one aligned.
|
836 |
-
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
|
837 |
-
|
838 |
-
tok_text = " ".join(tokenizer.tokenize(orig_text))
|
839 |
-
|
840 |
-
start_position = tok_text.find(pred_text)
|
841 |
-
if start_position == -1:
|
842 |
-
if verbose:
|
843 |
-
logging.info("Unable to find text: '%s' in '%s'", pred_text, orig_text)
|
844 |
-
return orig_text
|
845 |
-
end_position = start_position + len(pred_text) - 1
|
846 |
-
|
847 |
-
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
|
848 |
-
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
|
849 |
-
|
850 |
-
if len(orig_ns_text) != len(tok_ns_text):
|
851 |
-
if verbose:
|
852 |
-
logging.info("Length not equal after stripping spaces: '%s' vs '%s'",
|
853 |
-
orig_ns_text, tok_ns_text)
|
854 |
-
return orig_text
|
855 |
-
|
856 |
-
# We then project the characters in `pred_text` back to `orig_text` using
|
857 |
-
# the character-to-character alignment.
|
858 |
-
tok_s_to_ns_map = {}
|
859 |
-
for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
|
860 |
-
tok_s_to_ns_map[tok_index] = i
|
861 |
-
|
862 |
-
orig_start_position = None
|
863 |
-
if start_position in tok_s_to_ns_map:
|
864 |
-
ns_start_position = tok_s_to_ns_map[start_position]
|
865 |
-
if ns_start_position in orig_ns_to_s_map:
|
866 |
-
orig_start_position = orig_ns_to_s_map[ns_start_position]
|
867 |
-
|
868 |
-
if orig_start_position is None:
|
869 |
-
if verbose:
|
870 |
-
logging.info("Couldn't map start position")
|
871 |
-
return orig_text
|
872 |
-
|
873 |
-
orig_end_position = None
|
874 |
-
if end_position in tok_s_to_ns_map:
|
875 |
-
ns_end_position = tok_s_to_ns_map[end_position]
|
876 |
-
if ns_end_position in orig_ns_to_s_map:
|
877 |
-
orig_end_position = orig_ns_to_s_map[ns_end_position]
|
878 |
-
|
879 |
-
if orig_end_position is None:
|
880 |
-
if verbose:
|
881 |
-
logging.info("Couldn't map end position")
|
882 |
-
return orig_text
|
883 |
-
|
884 |
-
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
|
885 |
-
return output_text
|
886 |
-
|
887 |
-
|
888 |
-
def _get_best_indexes_and_logits(result,
|
889 |
-
n_best_size,
|
890 |
-
xlnet_format=False):
|
891 |
-
"""Generates the n-best indexes and logits from a list."""
|
892 |
-
if xlnet_format:
|
893 |
-
for i in range(n_best_size):
|
894 |
-
for j in range(n_best_size):
|
895 |
-
j_index = i * n_best_size + j
|
896 |
-
yield (result.start_indexes[i], result.start_logits[i],
|
897 |
-
result.end_indexes[j_index], result.end_logits[j_index])
|
898 |
-
else:
|
899 |
-
start_index_and_score = sorted(enumerate(result.start_logits),
|
900 |
-
key=lambda x: x[1], reverse=True)
|
901 |
-
end_index_and_score = sorted(enumerate(result.end_logits),
|
902 |
-
key=lambda x: x[1], reverse=True)
|
903 |
-
for i in range(len(start_index_and_score)):
|
904 |
-
if i >= n_best_size:
|
905 |
-
break
|
906 |
-
for j in range(len(end_index_and_score)):
|
907 |
-
if j >= n_best_size:
|
908 |
-
break
|
909 |
-
yield (start_index_and_score[i][0], start_index_and_score[i][1],
|
910 |
-
end_index_and_score[j][0], end_index_and_score[j][1])
|
911 |
-
|
912 |
-
|
913 |
-
def _compute_softmax(scores):
|
914 |
-
"""Compute softmax probability over raw logits."""
|
915 |
-
if not scores:
|
916 |
-
return []
|
917 |
-
|
918 |
-
max_score = None
|
919 |
-
for score in scores:
|
920 |
-
if max_score is None or score > max_score:
|
921 |
-
max_score = score
|
922 |
-
|
923 |
-
exp_scores = []
|
924 |
-
total_sum = 0.0
|
925 |
-
for score in scores:
|
926 |
-
x = math.exp(score - max_score)
|
927 |
-
exp_scores.append(x)
|
928 |
-
total_sum += x
|
929 |
-
|
930 |
-
probs = []
|
931 |
-
for score in exp_scores:
|
932 |
-
probs.append(score / total_sum)
|
933 |
-
return probs
|
934 |
-
|
935 |
-
|
936 |
-
def generate_tf_record_from_json_file(input_file_path,
|
937 |
-
vocab_file_path,
|
938 |
-
output_path,
|
939 |
-
translated_input_folder=None,
|
940 |
-
max_seq_length=384,
|
941 |
-
do_lower_case=True,
|
942 |
-
max_query_length=64,
|
943 |
-
doc_stride=128,
|
944 |
-
version_2_with_negative=False,
|
945 |
-
xlnet_format=False):
|
946 |
-
"""Generates and saves training data into a tf record file."""
|
947 |
-
train_examples = read_squad_examples(
|
948 |
-
input_file=input_file_path,
|
949 |
-
is_training=True,
|
950 |
-
version_2_with_negative=version_2_with_negative,
|
951 |
-
translated_input_folder=translated_input_folder)
|
952 |
-
tokenizer = tokenization.FullTokenizer(
|
953 |
-
vocab_file=vocab_file_path, do_lower_case=do_lower_case)
|
954 |
-
train_writer = FeatureWriter(filename=output_path, is_training=True)
|
955 |
-
number_of_examples = convert_examples_to_features(
|
956 |
-
examples=train_examples,
|
957 |
-
tokenizer=tokenizer,
|
958 |
-
max_seq_length=max_seq_length,
|
959 |
-
doc_stride=doc_stride,
|
960 |
-
max_query_length=max_query_length,
|
961 |
-
is_training=True,
|
962 |
-
output_fn=train_writer.process_feature,
|
963 |
-
xlnet_format=xlnet_format)
|
964 |
-
train_writer.close()
|
965 |
-
|
966 |
-
meta_data = {
|
967 |
-
"task_type": "bert_squad",
|
968 |
-
"train_data_size": number_of_examples,
|
969 |
-
"max_seq_length": max_seq_length,
|
970 |
-
"max_query_length": max_query_length,
|
971 |
-
"doc_stride": doc_stride,
|
972 |
-
"version_2_with_negative": version_2_with_negative,
|
973 |
-
}
|
974 |
-
|
975 |
-
return meta_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|