Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete create_finetuning_data.py
Browse files- create_finetuning_data.py +0 -441
create_finetuning_data.py
DELETED
@@ -1,441 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""BERT finetuning task dataset generator."""
|
16 |
-
|
17 |
-
import functools
|
18 |
-
import json
|
19 |
-
import os
|
20 |
-
|
21 |
-
# Import libraries
|
22 |
-
from absl import app
|
23 |
-
from absl import flags
|
24 |
-
import tensorflow as tf, tf_keras
|
25 |
-
from official.nlp.data import classifier_data_lib
|
26 |
-
from official.nlp.data import sentence_retrieval_lib
|
27 |
-
# word-piece tokenizer based squad_lib
|
28 |
-
from official.nlp.data import squad_lib as squad_lib_wp
|
29 |
-
# sentence-piece tokenizer based squad_lib
|
30 |
-
from official.nlp.data import squad_lib_sp
|
31 |
-
from official.nlp.data import tagging_data_lib
|
32 |
-
from official.nlp.tools import tokenization
|
33 |
-
|
34 |
-
FLAGS = flags.FLAGS
|
35 |
-
|
36 |
-
flags.DEFINE_enum(
|
37 |
-
"fine_tuning_task_type", "classification",
|
38 |
-
["classification", "regression", "squad", "retrieval", "tagging"],
|
39 |
-
"The name of the BERT fine tuning task for which data "
|
40 |
-
"will be generated.")
|
41 |
-
|
42 |
-
# BERT classification specific flags.
|
43 |
-
flags.DEFINE_string(
|
44 |
-
"input_data_dir", None,
|
45 |
-
"The input data dir. Should contain the .tsv files (or other data files) "
|
46 |
-
"for the task.")
|
47 |
-
|
48 |
-
flags.DEFINE_enum(
|
49 |
-
"classification_task_name", "MNLI", [
|
50 |
-
"AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE",
|
51 |
-
"SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X",
|
52 |
-
"AX-g", "SUPERGLUE-RTE", "CB", "BoolQ", "WIC"
|
53 |
-
], "The name of the task to train BERT classifier. The "
|
54 |
-
"difference between XTREME-XNLI and XNLI is: 1. the format "
|
55 |
-
"of input tsv files; 2. the dev set for XTREME is english "
|
56 |
-
"only and for XNLI is all languages combined. Same for "
|
57 |
-
"PAWS-X.")
|
58 |
-
|
59 |
-
# MNLI task-specific flag.
|
60 |
-
flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"],
|
61 |
-
"The type of MNLI dataset.")
|
62 |
-
|
63 |
-
# XNLI task-specific flag.
|
64 |
-
flags.DEFINE_string(
|
65 |
-
"xnli_language", "en",
|
66 |
-
"Language of training data for XNLI task. If the value is 'all', the data "
|
67 |
-
"of all languages will be used for training.")
|
68 |
-
|
69 |
-
# PAWS-X task-specific flag.
|
70 |
-
flags.DEFINE_string(
|
71 |
-
"pawsx_language", "en",
|
72 |
-
"Language of training data for PAWS-X task. If the value is 'all', the data "
|
73 |
-
"of all languages will be used for training.")
|
74 |
-
|
75 |
-
# XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli.
|
76 |
-
flags.DEFINE_string(
|
77 |
-
"translated_input_data_dir", None,
|
78 |
-
"The translated input data dir. Should contain the .tsv files (or other "
|
79 |
-
"data files) for the task.")
|
80 |
-
|
81 |
-
# Retrieval task-specific flags.
|
82 |
-
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
|
83 |
-
"The name of sentence retrieval task for scoring")
|
84 |
-
|
85 |
-
# Tagging task-specific flags.
|
86 |
-
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"],
|
87 |
-
"The name of BERT tagging (token classification) task.")
|
88 |
-
|
89 |
-
flags.DEFINE_bool("tagging_only_use_en_train", True,
|
90 |
-
"Whether only use english training data in tagging.")
|
91 |
-
|
92 |
-
# BERT Squad task-specific flags.
|
93 |
-
flags.DEFINE_string(
|
94 |
-
"squad_data_file", None,
|
95 |
-
"The input data file in for generating training data for BERT squad task.")
|
96 |
-
|
97 |
-
flags.DEFINE_string(
|
98 |
-
"translated_squad_data_folder", None,
|
99 |
-
"The translated data folder for generating training data for BERT squad "
|
100 |
-
"task.")
|
101 |
-
|
102 |
-
flags.DEFINE_integer(
|
103 |
-
"doc_stride", 128,
|
104 |
-
"When splitting up a long document into chunks, how much stride to "
|
105 |
-
"take between chunks.")
|
106 |
-
|
107 |
-
flags.DEFINE_integer(
|
108 |
-
"max_query_length", 64,
|
109 |
-
"The maximum number of tokens for the question. Questions longer than "
|
110 |
-
"this will be truncated to this length.")
|
111 |
-
|
112 |
-
flags.DEFINE_bool(
|
113 |
-
"version_2_with_negative", False,
|
114 |
-
"If true, the SQuAD examples contain some that do not have an answer.")
|
115 |
-
|
116 |
-
flags.DEFINE_bool(
|
117 |
-
"xlnet_format", False,
|
118 |
-
"If true, then data will be preprocessed in a paragraph, query, class order"
|
119 |
-
" instead of the BERT-style class, paragraph, query order.")
|
120 |
-
|
121 |
-
# XTREME specific flags.
|
122 |
-
flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.")
|
123 |
-
|
124 |
-
# Shared flags across BERT fine-tuning tasks.
|
125 |
-
flags.DEFINE_string("vocab_file", None,
|
126 |
-
"The vocabulary file that the BERT model was trained on.")
|
127 |
-
|
128 |
-
flags.DEFINE_string(
|
129 |
-
"train_data_output_path", None,
|
130 |
-
"The path in which generated training input data will be written as tf"
|
131 |
-
" records.")
|
132 |
-
|
133 |
-
flags.DEFINE_string(
|
134 |
-
"eval_data_output_path", None,
|
135 |
-
"The path in which generated evaluation input data will be written as tf"
|
136 |
-
" records.")
|
137 |
-
|
138 |
-
flags.DEFINE_string(
|
139 |
-
"test_data_output_path", None,
|
140 |
-
"The path in which generated test input data will be written as tf"
|
141 |
-
" records. If None, do not generate test data. Must be a pattern template"
|
142 |
-
" as test_{}.tfrecords if processor has language specific test data.")
|
143 |
-
|
144 |
-
flags.DEFINE_string("meta_data_file_path", None,
|
145 |
-
"The path in which input meta data will be written.")
|
146 |
-
|
147 |
-
flags.DEFINE_bool(
|
148 |
-
"do_lower_case", True,
|
149 |
-
"Whether to lower case the input text. Should be True for uncased "
|
150 |
-
"models and False for cased models.")
|
151 |
-
|
152 |
-
flags.DEFINE_integer(
|
153 |
-
"max_seq_length", 128,
|
154 |
-
"The maximum total input sequence length after WordPiece tokenization. "
|
155 |
-
"Sequences longer than this will be truncated, and sequences shorter "
|
156 |
-
"than this will be padded.")
|
157 |
-
|
158 |
-
flags.DEFINE_string("sp_model_file", "",
|
159 |
-
"The path to the model used by sentence piece tokenizer.")
|
160 |
-
|
161 |
-
flags.DEFINE_enum(
|
162 |
-
"tokenization", "WordPiece", ["WordPiece", "SentencePiece"],
|
163 |
-
"Specifies the tokenizer implementation, i.e., whether to use WordPiece "
|
164 |
-
"or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, "
|
165 |
-
"while ALBERT uses SentencePiece tokenizer.")
|
166 |
-
|
167 |
-
flags.DEFINE_string(
|
168 |
-
"tfds_params", "", "Comma-separated list of TFDS parameter assignments for "
|
169 |
-
"generic classfication data import (for more details "
|
170 |
-
"see the TfdsProcessor class documentation).")
|
171 |
-
|
172 |
-
|
173 |
-
def generate_classifier_dataset():
|
174 |
-
"""Generates classifier dataset and returns input meta data."""
|
175 |
-
if FLAGS.classification_task_name in [
|
176 |
-
"COLA",
|
177 |
-
"WNLI",
|
178 |
-
"SST-2",
|
179 |
-
"MRPC",
|
180 |
-
"QQP",
|
181 |
-
"STS-B",
|
182 |
-
"MNLI",
|
183 |
-
"QNLI",
|
184 |
-
"RTE",
|
185 |
-
"AX",
|
186 |
-
"SUPERGLUE-RTE",
|
187 |
-
"CB",
|
188 |
-
"BoolQ",
|
189 |
-
"WIC",
|
190 |
-
]:
|
191 |
-
assert not FLAGS.input_data_dir or FLAGS.tfds_params
|
192 |
-
else:
|
193 |
-
assert (FLAGS.input_data_dir and FLAGS.classification_task_name or
|
194 |
-
FLAGS.tfds_params)
|
195 |
-
|
196 |
-
if FLAGS.tokenization == "WordPiece":
|
197 |
-
tokenizer = tokenization.FullTokenizer(
|
198 |
-
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
199 |
-
processor_text_fn = tokenization.convert_to_unicode
|
200 |
-
else:
|
201 |
-
assert FLAGS.tokenization == "SentencePiece"
|
202 |
-
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
|
203 |
-
processor_text_fn = functools.partial(
|
204 |
-
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
|
205 |
-
|
206 |
-
if FLAGS.tfds_params:
|
207 |
-
processor = classifier_data_lib.TfdsProcessor(
|
208 |
-
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
|
209 |
-
return classifier_data_lib.generate_tf_record_from_data_file(
|
210 |
-
processor,
|
211 |
-
None,
|
212 |
-
tokenizer,
|
213 |
-
train_data_output_path=FLAGS.train_data_output_path,
|
214 |
-
eval_data_output_path=FLAGS.eval_data_output_path,
|
215 |
-
test_data_output_path=FLAGS.test_data_output_path,
|
216 |
-
max_seq_length=FLAGS.max_seq_length)
|
217 |
-
else:
|
218 |
-
processors = {
|
219 |
-
"ax":
|
220 |
-
classifier_data_lib.AxProcessor,
|
221 |
-
"cola":
|
222 |
-
classifier_data_lib.ColaProcessor,
|
223 |
-
"imdb":
|
224 |
-
classifier_data_lib.ImdbProcessor,
|
225 |
-
"mnli":
|
226 |
-
functools.partial(
|
227 |
-
classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type),
|
228 |
-
"mrpc":
|
229 |
-
classifier_data_lib.MrpcProcessor,
|
230 |
-
"qnli":
|
231 |
-
classifier_data_lib.QnliProcessor,
|
232 |
-
"qqp":
|
233 |
-
classifier_data_lib.QqpProcessor,
|
234 |
-
"rte":
|
235 |
-
classifier_data_lib.RteProcessor,
|
236 |
-
"sst-2":
|
237 |
-
classifier_data_lib.SstProcessor,
|
238 |
-
"sts-b":
|
239 |
-
classifier_data_lib.StsBProcessor,
|
240 |
-
"xnli":
|
241 |
-
functools.partial(
|
242 |
-
classifier_data_lib.XnliProcessor,
|
243 |
-
language=FLAGS.xnli_language),
|
244 |
-
"paws-x":
|
245 |
-
functools.partial(
|
246 |
-
classifier_data_lib.PawsxProcessor,
|
247 |
-
language=FLAGS.pawsx_language),
|
248 |
-
"wnli":
|
249 |
-
classifier_data_lib.WnliProcessor,
|
250 |
-
"xtreme-xnli":
|
251 |
-
functools.partial(
|
252 |
-
classifier_data_lib.XtremeXnliProcessor,
|
253 |
-
translated_data_dir=FLAGS.translated_input_data_dir,
|
254 |
-
only_use_en_dev=FLAGS.only_use_en_dev),
|
255 |
-
"xtreme-paws-x":
|
256 |
-
functools.partial(
|
257 |
-
classifier_data_lib.XtremePawsxProcessor,
|
258 |
-
translated_data_dir=FLAGS.translated_input_data_dir,
|
259 |
-
only_use_en_dev=FLAGS.only_use_en_dev),
|
260 |
-
"ax-g":
|
261 |
-
classifier_data_lib.AXgProcessor,
|
262 |
-
"superglue-rte":
|
263 |
-
classifier_data_lib.SuperGLUERTEProcessor,
|
264 |
-
"cb":
|
265 |
-
classifier_data_lib.CBProcessor,
|
266 |
-
"boolq":
|
267 |
-
classifier_data_lib.BoolQProcessor,
|
268 |
-
"wic":
|
269 |
-
classifier_data_lib.WnliProcessor,
|
270 |
-
}
|
271 |
-
task_name = FLAGS.classification_task_name.lower()
|
272 |
-
if task_name not in processors:
|
273 |
-
raise ValueError("Task not found: %s" % (task_name,))
|
274 |
-
|
275 |
-
processor = processors[task_name](process_text_fn=processor_text_fn)
|
276 |
-
return classifier_data_lib.generate_tf_record_from_data_file(
|
277 |
-
processor,
|
278 |
-
FLAGS.input_data_dir,
|
279 |
-
tokenizer,
|
280 |
-
train_data_output_path=FLAGS.train_data_output_path,
|
281 |
-
eval_data_output_path=FLAGS.eval_data_output_path,
|
282 |
-
test_data_output_path=FLAGS.test_data_output_path,
|
283 |
-
max_seq_length=FLAGS.max_seq_length)
|
284 |
-
|
285 |
-
|
286 |
-
def generate_regression_dataset():
|
287 |
-
"""Generates regression dataset and returns input meta data."""
|
288 |
-
if FLAGS.tokenization == "WordPiece":
|
289 |
-
tokenizer = tokenization.FullTokenizer(
|
290 |
-
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
291 |
-
processor_text_fn = tokenization.convert_to_unicode
|
292 |
-
else:
|
293 |
-
assert FLAGS.tokenization == "SentencePiece"
|
294 |
-
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
|
295 |
-
processor_text_fn = functools.partial(
|
296 |
-
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
|
297 |
-
|
298 |
-
if FLAGS.tfds_params:
|
299 |
-
processor = classifier_data_lib.TfdsProcessor(
|
300 |
-
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
|
301 |
-
return classifier_data_lib.generate_tf_record_from_data_file(
|
302 |
-
processor,
|
303 |
-
None,
|
304 |
-
tokenizer,
|
305 |
-
train_data_output_path=FLAGS.train_data_output_path,
|
306 |
-
eval_data_output_path=FLAGS.eval_data_output_path,
|
307 |
-
test_data_output_path=FLAGS.test_data_output_path,
|
308 |
-
max_seq_length=FLAGS.max_seq_length)
|
309 |
-
else:
|
310 |
-
raise ValueError("No data processor found for the given regression task.")
|
311 |
-
|
312 |
-
|
313 |
-
def generate_squad_dataset():
|
314 |
-
"""Generates squad training dataset and returns input meta data."""
|
315 |
-
assert FLAGS.squad_data_file
|
316 |
-
if FLAGS.tokenization == "WordPiece":
|
317 |
-
return squad_lib_wp.generate_tf_record_from_json_file(
|
318 |
-
input_file_path=FLAGS.squad_data_file,
|
319 |
-
vocab_file_path=FLAGS.vocab_file,
|
320 |
-
output_path=FLAGS.train_data_output_path,
|
321 |
-
translated_input_folder=FLAGS.translated_squad_data_folder,
|
322 |
-
max_seq_length=FLAGS.max_seq_length,
|
323 |
-
do_lower_case=FLAGS.do_lower_case,
|
324 |
-
max_query_length=FLAGS.max_query_length,
|
325 |
-
doc_stride=FLAGS.doc_stride,
|
326 |
-
version_2_with_negative=FLAGS.version_2_with_negative,
|
327 |
-
xlnet_format=FLAGS.xlnet_format)
|
328 |
-
else:
|
329 |
-
assert FLAGS.tokenization == "SentencePiece"
|
330 |
-
return squad_lib_sp.generate_tf_record_from_json_file(
|
331 |
-
input_file_path=FLAGS.squad_data_file,
|
332 |
-
sp_model_file=FLAGS.sp_model_file,
|
333 |
-
output_path=FLAGS.train_data_output_path,
|
334 |
-
translated_input_folder=FLAGS.translated_squad_data_folder,
|
335 |
-
max_seq_length=FLAGS.max_seq_length,
|
336 |
-
do_lower_case=FLAGS.do_lower_case,
|
337 |
-
max_query_length=FLAGS.max_query_length,
|
338 |
-
doc_stride=FLAGS.doc_stride,
|
339 |
-
xlnet_format=FLAGS.xlnet_format,
|
340 |
-
version_2_with_negative=FLAGS.version_2_with_negative)
|
341 |
-
|
342 |
-
|
343 |
-
def generate_retrieval_dataset():
|
344 |
-
"""Generate retrieval test and dev dataset and returns input meta data."""
|
345 |
-
assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
|
346 |
-
if FLAGS.tokenization == "WordPiece":
|
347 |
-
tokenizer = tokenization.FullTokenizer(
|
348 |
-
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
349 |
-
processor_text_fn = tokenization.convert_to_unicode
|
350 |
-
else:
|
351 |
-
assert FLAGS.tokenization == "SentencePiece"
|
352 |
-
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
|
353 |
-
processor_text_fn = functools.partial(
|
354 |
-
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
|
355 |
-
|
356 |
-
processors = {
|
357 |
-
"bucc": sentence_retrieval_lib.BuccProcessor,
|
358 |
-
"tatoeba": sentence_retrieval_lib.TatoebaProcessor,
|
359 |
-
}
|
360 |
-
|
361 |
-
task_name = FLAGS.retrieval_task_name.lower()
|
362 |
-
if task_name not in processors:
|
363 |
-
raise ValueError("Task not found: %s" % task_name)
|
364 |
-
|
365 |
-
processor = processors[task_name](process_text_fn=processor_text_fn)
|
366 |
-
|
367 |
-
return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
|
368 |
-
processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path,
|
369 |
-
FLAGS.test_data_output_path, FLAGS.max_seq_length)
|
370 |
-
|
371 |
-
|
372 |
-
def generate_tagging_dataset():
|
373 |
-
"""Generates tagging dataset."""
|
374 |
-
processors = {
|
375 |
-
"panx":
|
376 |
-
functools.partial(
|
377 |
-
tagging_data_lib.PanxProcessor,
|
378 |
-
only_use_en_train=FLAGS.tagging_only_use_en_train,
|
379 |
-
only_use_en_dev=FLAGS.only_use_en_dev),
|
380 |
-
"udpos":
|
381 |
-
functools.partial(
|
382 |
-
tagging_data_lib.UdposProcessor,
|
383 |
-
only_use_en_train=FLAGS.tagging_only_use_en_train,
|
384 |
-
only_use_en_dev=FLAGS.only_use_en_dev),
|
385 |
-
}
|
386 |
-
task_name = FLAGS.tagging_task_name.lower()
|
387 |
-
if task_name not in processors:
|
388 |
-
raise ValueError("Task not found: %s" % task_name)
|
389 |
-
|
390 |
-
if FLAGS.tokenization == "WordPiece":
|
391 |
-
tokenizer = tokenization.FullTokenizer(
|
392 |
-
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
|
393 |
-
processor_text_fn = tokenization.convert_to_unicode
|
394 |
-
elif FLAGS.tokenization == "SentencePiece":
|
395 |
-
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
|
396 |
-
processor_text_fn = functools.partial(
|
397 |
-
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
|
398 |
-
else:
|
399 |
-
raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization)
|
400 |
-
|
401 |
-
processor = processors[task_name]()
|
402 |
-
return tagging_data_lib.generate_tf_record_from_data_file(
|
403 |
-
processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length,
|
404 |
-
FLAGS.train_data_output_path, FLAGS.eval_data_output_path,
|
405 |
-
FLAGS.test_data_output_path, processor_text_fn)
|
406 |
-
|
407 |
-
|
408 |
-
def main(_):
|
409 |
-
if FLAGS.tokenization == "WordPiece":
|
410 |
-
if not FLAGS.vocab_file:
|
411 |
-
raise ValueError(
|
412 |
-
"FLAG vocab_file for word-piece tokenizer is not specified.")
|
413 |
-
else:
|
414 |
-
assert FLAGS.tokenization == "SentencePiece"
|
415 |
-
if not FLAGS.sp_model_file:
|
416 |
-
raise ValueError(
|
417 |
-
"FLAG sp_model_file for sentence-piece tokenizer is not specified.")
|
418 |
-
|
419 |
-
if FLAGS.fine_tuning_task_type != "retrieval":
|
420 |
-
flags.mark_flag_as_required("train_data_output_path")
|
421 |
-
|
422 |
-
if FLAGS.fine_tuning_task_type == "classification":
|
423 |
-
input_meta_data = generate_classifier_dataset()
|
424 |
-
elif FLAGS.fine_tuning_task_type == "regression":
|
425 |
-
input_meta_data = generate_regression_dataset()
|
426 |
-
elif FLAGS.fine_tuning_task_type == "retrieval":
|
427 |
-
input_meta_data = generate_retrieval_dataset()
|
428 |
-
elif FLAGS.fine_tuning_task_type == "squad":
|
429 |
-
input_meta_data = generate_squad_dataset()
|
430 |
-
else:
|
431 |
-
assert FLAGS.fine_tuning_task_type == "tagging"
|
432 |
-
input_meta_data = generate_tagging_dataset()
|
433 |
-
|
434 |
-
tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
|
435 |
-
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
|
436 |
-
writer.write(json.dumps(input_meta_data, indent=4) + "\n")
|
437 |
-
|
438 |
-
|
439 |
-
if __name__ == "__main__":
|
440 |
-
flags.mark_flag_as_required("meta_data_file_path")
|
441 |
-
app.run(main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|