Spaces:
Running
Running
Pradeep Kumar
commited on
Delete squad_evaluate_v2_0.py
Browse files- squad_evaluate_v2_0.py +0 -249
squad_evaluate_v2_0.py
DELETED
@@ -1,249 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Evaluation script for SQuAD version 2.0.
|
16 |
-
|
17 |
-
The functions are copied and modified from
|
18 |
-
https://raw.githubusercontent.com/white127/SQUAD-2.0-bidaf/master/evaluate-v2.0.py
|
19 |
-
|
20 |
-
In addition to basic functionality, we also compute additional statistics and
|
21 |
-
plot precision-recall curves if an additional na_prob.json file is provided.
|
22 |
-
This file is expected to map question ID's to the model's predicted probability
|
23 |
-
that a question is unanswerable.
|
24 |
-
"""
|
25 |
-
|
26 |
-
import collections
|
27 |
-
import re
|
28 |
-
import string
|
29 |
-
|
30 |
-
from absl import logging
|
31 |
-
|
32 |
-
|
33 |
-
def _make_qid_to_has_ans(dataset):
|
34 |
-
qid_to_has_ans = {}
|
35 |
-
for article in dataset:
|
36 |
-
for p in article['paragraphs']:
|
37 |
-
for qa in p['qas']:
|
38 |
-
qid_to_has_ans[qa['id']] = bool(qa['answers'])
|
39 |
-
return qid_to_has_ans
|
40 |
-
|
41 |
-
|
42 |
-
def _normalize_answer(s):
|
43 |
-
"""Lower text and remove punctuation, articles and extra whitespace."""
|
44 |
-
def remove_articles(text):
|
45 |
-
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
|
46 |
-
return re.sub(regex, ' ', text)
|
47 |
-
def white_space_fix(text):
|
48 |
-
return ' '.join(text.split())
|
49 |
-
def remove_punc(text):
|
50 |
-
exclude = set(string.punctuation)
|
51 |
-
return ''.join(ch for ch in text if ch not in exclude)
|
52 |
-
def lower(text):
|
53 |
-
return text.lower()
|
54 |
-
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
55 |
-
|
56 |
-
|
57 |
-
def _get_tokens(s):
|
58 |
-
if not s: return []
|
59 |
-
return _normalize_answer(s).split()
|
60 |
-
|
61 |
-
|
62 |
-
def _compute_exact(a_gold, a_pred):
|
63 |
-
return int(_normalize_answer(a_gold) == _normalize_answer(a_pred))
|
64 |
-
|
65 |
-
|
66 |
-
def _compute_f1(a_gold, a_pred):
|
67 |
-
"""Compute F1-score."""
|
68 |
-
gold_toks = _get_tokens(a_gold)
|
69 |
-
pred_toks = _get_tokens(a_pred)
|
70 |
-
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
|
71 |
-
num_same = sum(common.values())
|
72 |
-
if not gold_toks or not pred_toks:
|
73 |
-
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
|
74 |
-
return int(gold_toks == pred_toks)
|
75 |
-
if num_same == 0:
|
76 |
-
return 0
|
77 |
-
precision = 1.0 * num_same / len(pred_toks)
|
78 |
-
recall = 1.0 * num_same / len(gold_toks)
|
79 |
-
f1 = (2 * precision * recall) / (precision + recall)
|
80 |
-
return f1
|
81 |
-
|
82 |
-
|
83 |
-
def _get_raw_scores(dataset, predictions):
|
84 |
-
"""Compute raw scores."""
|
85 |
-
exact_scores = {}
|
86 |
-
f1_scores = {}
|
87 |
-
for article in dataset:
|
88 |
-
for p in article['paragraphs']:
|
89 |
-
for qa in p['qas']:
|
90 |
-
qid = qa['id']
|
91 |
-
gold_answers = [a['text'] for a in qa['answers']
|
92 |
-
if _normalize_answer(a['text'])]
|
93 |
-
if not gold_answers:
|
94 |
-
# For unanswerable questions, only correct answer is empty string
|
95 |
-
gold_answers = ['']
|
96 |
-
if qid not in predictions:
|
97 |
-
logging.error('Missing prediction for %s', qid)
|
98 |
-
continue
|
99 |
-
a_pred = predictions[qid]
|
100 |
-
# Take max over all gold answers
|
101 |
-
exact_scores[qid] = max(_compute_exact(a, a_pred) for a in gold_answers)
|
102 |
-
f1_scores[qid] = max(_compute_f1(a, a_pred) for a in gold_answers)
|
103 |
-
return exact_scores, f1_scores
|
104 |
-
|
105 |
-
|
106 |
-
def _apply_no_ans_threshold(
|
107 |
-
scores, na_probs, qid_to_has_ans, na_prob_thresh=1.0):
|
108 |
-
new_scores = {}
|
109 |
-
for qid, s in scores.items():
|
110 |
-
pred_na = na_probs[qid] > na_prob_thresh
|
111 |
-
if pred_na:
|
112 |
-
new_scores[qid] = float(not qid_to_has_ans[qid])
|
113 |
-
else:
|
114 |
-
new_scores[qid] = s
|
115 |
-
return new_scores
|
116 |
-
|
117 |
-
|
118 |
-
def _make_eval_dict(exact_scores, f1_scores, qid_list=None):
|
119 |
-
"""Make evaluation result dictionary."""
|
120 |
-
if not qid_list:
|
121 |
-
total = len(exact_scores)
|
122 |
-
return collections.OrderedDict([
|
123 |
-
('exact', 100.0 * sum(exact_scores.values()) / total),
|
124 |
-
('f1', 100.0 * sum(f1_scores.values()) / total),
|
125 |
-
('total', total),
|
126 |
-
])
|
127 |
-
else:
|
128 |
-
total = len(qid_list)
|
129 |
-
return collections.OrderedDict([
|
130 |
-
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
|
131 |
-
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
|
132 |
-
('total', total),
|
133 |
-
])
|
134 |
-
|
135 |
-
|
136 |
-
def _merge_eval(main_eval, new_eval, prefix):
|
137 |
-
for k in new_eval:
|
138 |
-
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
|
139 |
-
|
140 |
-
|
141 |
-
def _make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans):
|
142 |
-
"""Make evaluation dictionary containing average recision recall."""
|
143 |
-
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
|
144 |
-
true_pos = 0.0
|
145 |
-
cur_p = 1.0
|
146 |
-
cur_r = 0.0
|
147 |
-
precisions = [1.0]
|
148 |
-
recalls = [0.0]
|
149 |
-
avg_prec = 0.0
|
150 |
-
for i, qid in enumerate(qid_list):
|
151 |
-
if qid_to_has_ans[qid]:
|
152 |
-
true_pos += scores[qid]
|
153 |
-
cur_p = true_pos / float(i+1)
|
154 |
-
cur_r = true_pos / float(num_true_pos)
|
155 |
-
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
|
156 |
-
# i.e., if we can put a threshold after this point
|
157 |
-
avg_prec += cur_p * (cur_r - recalls[-1])
|
158 |
-
precisions.append(cur_p)
|
159 |
-
recalls.append(cur_r)
|
160 |
-
return {'ap': 100.0 * avg_prec}
|
161 |
-
|
162 |
-
|
163 |
-
def _run_precision_recall_analysis(
|
164 |
-
main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans):
|
165 |
-
"""Run precision recall analysis and return result dictionary."""
|
166 |
-
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
|
167 |
-
if num_true_pos == 0:
|
168 |
-
return
|
169 |
-
pr_exact = _make_precision_recall_eval(
|
170 |
-
exact_raw, na_probs, num_true_pos, qid_to_has_ans)
|
171 |
-
pr_f1 = _make_precision_recall_eval(
|
172 |
-
f1_raw, na_probs, num_true_pos, qid_to_has_ans)
|
173 |
-
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
|
174 |
-
pr_oracle = _make_precision_recall_eval(
|
175 |
-
oracle_scores, na_probs, num_true_pos, qid_to_has_ans)
|
176 |
-
_merge_eval(main_eval, pr_exact, 'pr_exact')
|
177 |
-
_merge_eval(main_eval, pr_f1, 'pr_f1')
|
178 |
-
_merge_eval(main_eval, pr_oracle, 'pr_oracle')
|
179 |
-
|
180 |
-
|
181 |
-
def _find_best_thresh(predictions, scores, na_probs, qid_to_has_ans):
|
182 |
-
"""Find the best threshold for no answer probability."""
|
183 |
-
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
|
184 |
-
cur_score = num_no_ans
|
185 |
-
best_score = cur_score
|
186 |
-
best_thresh = 0.0
|
187 |
-
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
|
188 |
-
for qid in qid_list:
|
189 |
-
if qid not in scores: continue
|
190 |
-
if qid_to_has_ans[qid]:
|
191 |
-
diff = scores[qid]
|
192 |
-
else:
|
193 |
-
if predictions[qid]:
|
194 |
-
diff = -1
|
195 |
-
else:
|
196 |
-
diff = 0
|
197 |
-
cur_score += diff
|
198 |
-
if cur_score > best_score:
|
199 |
-
best_score = cur_score
|
200 |
-
best_thresh = na_probs[qid]
|
201 |
-
return 100.0 * best_score / len(scores), best_thresh
|
202 |
-
|
203 |
-
|
204 |
-
def _find_all_best_thresh(
|
205 |
-
main_eval, predictions, exact_raw, f1_raw, na_probs, qid_to_has_ans):
|
206 |
-
best_exact, exact_thresh = _find_best_thresh(
|
207 |
-
predictions, exact_raw, na_probs, qid_to_has_ans)
|
208 |
-
best_f1, f1_thresh = _find_best_thresh(
|
209 |
-
predictions, f1_raw, na_probs, qid_to_has_ans)
|
210 |
-
main_eval['final_exact'] = best_exact
|
211 |
-
main_eval['final_exact_thresh'] = exact_thresh
|
212 |
-
main_eval['final_f1'] = best_f1
|
213 |
-
main_eval['final_f1_thresh'] = f1_thresh
|
214 |
-
|
215 |
-
|
216 |
-
def evaluate(dataset, predictions, na_probs=None):
|
217 |
-
"""Evaluate prediction results."""
|
218 |
-
new_orig_data = []
|
219 |
-
for article in dataset:
|
220 |
-
for p in article['paragraphs']:
|
221 |
-
for qa in p['qas']:
|
222 |
-
if qa['id'] in predictions:
|
223 |
-
new_para = {'qas': [qa]}
|
224 |
-
new_article = {'paragraphs': [new_para]}
|
225 |
-
new_orig_data.append(new_article)
|
226 |
-
dataset = new_orig_data
|
227 |
-
|
228 |
-
if na_probs is None:
|
229 |
-
na_probs = {k: 0.0 for k in predictions}
|
230 |
-
qid_to_has_ans = _make_qid_to_has_ans(dataset) # maps qid to True/False
|
231 |
-
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
|
232 |
-
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
|
233 |
-
exact_raw, f1_raw = _get_raw_scores(dataset, predictions)
|
234 |
-
exact_thresh = _apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans)
|
235 |
-
f1_thresh = _apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans)
|
236 |
-
out_eval = _make_eval_dict(exact_thresh, f1_thresh)
|
237 |
-
if has_ans_qids:
|
238 |
-
has_ans_eval = _make_eval_dict(
|
239 |
-
exact_thresh, f1_thresh, qid_list=has_ans_qids)
|
240 |
-
_merge_eval(out_eval, has_ans_eval, 'HasAns')
|
241 |
-
if no_ans_qids:
|
242 |
-
no_ans_eval = _make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
|
243 |
-
_merge_eval(out_eval, no_ans_eval, 'NoAns')
|
244 |
-
|
245 |
-
_find_all_best_thresh(
|
246 |
-
out_eval, predictions, exact_raw, f1_raw, na_probs, qid_to_has_ans)
|
247 |
-
_run_precision_recall_analysis(
|
248 |
-
out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans)
|
249 |
-
return out_eval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|