diff --git "a/classifier_data_lib.py" "b/classifier_data_lib.py"
--- "a/classifier_data_lib.py"
+++ "b/classifier_data_lib.py"
@@ -1,1612 +1,1612 @@
-# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""BERT library to process data for classification task."""
-
-import collections
-import csv
-import importlib
-import json
-import os
-
-from absl import logging
-import tensorflow as tf, tf_keras
-import tensorflow_datasets as tfds
-
-from official.nlp.tools import tokenization
-
-
-class InputExample(object):
- """A single training/test example for simple seq regression/classification."""
-
- def __init__(self,
- guid,
- text_a,
- text_b=None,
- label=None,
- weight=None,
- example_id=None):
- """Constructs a InputExample.
-
- Args:
- guid: Unique id for the example.
- text_a: string. The untokenized text of the first sequence. For single
- sequence tasks, only this sequence must be specified.
- text_b: (Optional) string. The untokenized text of the second sequence.
- Only must be specified for sequence pair tasks.
- label: (Optional) string for classification, float for regression. The
- label of the example. This should be specified for train and dev
- examples, but not for test examples.
- weight: (Optional) float. The weight of the example to be used during
- training.
- example_id: (Optional) int. The int identification number of example in
- the corpus.
- """
- self.guid = guid
- self.text_a = text_a
- self.text_b = text_b
- self.label = label
- self.weight = weight
- self.example_id = example_id
-
-
-class InputFeatures(object):
- """A single set of features of data."""
-
- def __init__(self,
- input_ids,
- input_mask,
- segment_ids,
- label_id,
- is_real_example=True,
- weight=None,
- example_id=None):
- self.input_ids = input_ids
- self.input_mask = input_mask
- self.segment_ids = segment_ids
- self.label_id = label_id
- self.is_real_example = is_real_example
- self.weight = weight
- self.example_id = example_id
-
-
-class DataProcessor(object):
- """Base class for converters for seq regression/classification datasets."""
-
- def __init__(self, process_text_fn=tokenization.convert_to_unicode):
- self.process_text_fn = process_text_fn
- self.is_regression = False
- self.label_type = None
-
- def get_train_examples(self, data_dir):
- """Gets a collection of `InputExample`s for the train set."""
- raise NotImplementedError()
-
- def get_dev_examples(self, data_dir):
- """Gets a collection of `InputExample`s for the dev set."""
- raise NotImplementedError()
-
- def get_test_examples(self, data_dir):
- """Gets a collection of `InputExample`s for prediction."""
- raise NotImplementedError()
-
- def get_labels(self):
- """Gets the list of labels for this data set."""
- raise NotImplementedError()
-
- @staticmethod
- def get_processor_name():
- """Gets the string identifier of the processor."""
- raise NotImplementedError()
-
- @classmethod
- def _read_tsv(cls, input_file, quotechar=None):
- """Reads a tab separated value file."""
- with tf.io.gfile.GFile(input_file, "r") as f:
- reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
- lines = []
- for line in reader:
- lines.append(line)
- return lines
-
- @classmethod
- def _read_jsonl(cls, input_file):
- """Reads a json line file."""
- with tf.io.gfile.GFile(input_file, "r") as f:
- lines = []
- for json_str in f:
- lines.append(json.loads(json_str))
- return lines
-
- def featurize_example(self, *kargs, **kwargs):
- """Converts a single `InputExample` into a single `InputFeatures`."""
- return convert_single_example(*kargs, **kwargs)
-
-
-class DefaultGLUEDataProcessor(DataProcessor):
- """Processor for the SuperGLUE dataset."""
-
- def get_train_examples(self, data_dir):
- """See base class."""
- return self._create_examples_tfds("train")
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- return self._create_examples_tfds("validation")
-
- def get_test_examples(self, data_dir):
- """See base class."""
- return self._create_examples_tfds("test")
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- raise NotImplementedError()
-
-
-class AxProcessor(DataProcessor):
- """Processor for the AX dataset (GLUE diagnostics dataset)."""
-
- def get_train_examples(self, data_dir):
- """See base class."""
- train_mnli_dataset = tfds.load(
- "glue/mnli", split="train", try_gcs=True).as_numpy_iterator()
- return self._create_examples_tfds(train_mnli_dataset, "train")
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- val_mnli_dataset = tfds.load(
- "glue/mnli", split="validation_matched",
- try_gcs=True).as_numpy_iterator()
- return self._create_examples_tfds(val_mnli_dataset, "validation")
-
- def get_test_examples(self, data_dir):
- """See base class."""
- test_ax_dataset = tfds.load(
- "glue/ax", split="test", try_gcs=True).as_numpy_iterator()
- return self._create_examples_tfds(test_ax_dataset, "test")
-
- def get_labels(self):
- """See base class."""
- return ["contradiction", "entailment", "neutral"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "AX"
-
- def _create_examples_tfds(self, dataset, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "contradiction"
- text_a = self.process_text_fn(example["hypothesis"])
- text_b = self.process_text_fn(example["premise"])
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class ColaProcessor(DefaultGLUEDataProcessor):
- """Processor for the CoLA data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "COLA"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "0"
- text_a = self.process_text_fn(example["sentence"])
- if set_type != "test":
- label = str(example["label"])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
- return examples
-
-
-class ImdbProcessor(DataProcessor):
- """Processor for the IMDb dataset."""
-
- def get_labels(self):
- return ["neg", "pos"]
-
- def get_train_examples(self, data_dir):
- return self._create_examples(os.path.join(data_dir, "train"))
-
- def get_dev_examples(self, data_dir):
- return self._create_examples(os.path.join(data_dir, "test"))
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "IMDB"
-
- def _create_examples(self, data_dir):
- """Creates examples."""
- examples = []
- for label in ["neg", "pos"]:
- cur_dir = os.path.join(data_dir, label)
- for filename in tf.io.gfile.listdir(cur_dir):
- if not filename.endswith("txt"):
- continue
-
- if len(examples) % 1000 == 0:
- logging.info("Loading dev example %d", len(examples))
-
- path = os.path.join(cur_dir, filename)
- with tf.io.gfile.GFile(path, "r") as f:
- text = f.read().strip().replace("
", " ")
- examples.append(
- InputExample(
- guid="unused_id", text_a=text, text_b=None, label=label))
- return examples
-
-
-class MnliProcessor(DataProcessor):
- """Processor for the MultiNLI data set (GLUE version)."""
-
- def __init__(self,
- mnli_type="matched",
- process_text_fn=tokenization.convert_to_unicode):
- super(MnliProcessor, self).__init__(process_text_fn)
- self.dataset = tfds.load("glue/mnli", try_gcs=True)
- if mnli_type not in ("matched", "mismatched"):
- raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
- self.mnli_type = mnli_type
-
- def get_train_examples(self, data_dir):
- """See base class."""
- return self._create_examples_tfds("train")
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- if self.mnli_type == "matched":
- return self._create_examples_tfds("validation_matched")
- else:
- return self._create_examples_tfds("validation_mismatched")
-
- def get_test_examples(self, data_dir):
- """See base class."""
- if self.mnli_type == "matched":
- return self._create_examples_tfds("test_matched")
- else:
- return self._create_examples_tfds("test_mismatched")
-
- def get_labels(self):
- """See base class."""
- return ["contradiction", "entailment", "neutral"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "MNLI"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "contradiction"
- text_a = self.process_text_fn(example["hypothesis"])
- text_b = self.process_text_fn(example["premise"])
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class MrpcProcessor(DefaultGLUEDataProcessor):
- """Processor for the MRPC data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "MRPC"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "0"
- text_a = self.process_text_fn(example["sentence1"])
- text_b = self.process_text_fn(example["sentence2"])
- if set_type != "test":
- label = str(example["label"])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class PawsxProcessor(DataProcessor):
- """Processor for the PAWS-X data set."""
- supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
-
- def __init__(self,
- language="en",
- process_text_fn=tokenization.convert_to_unicode):
- super(PawsxProcessor, self).__init__(process_text_fn)
- if language == "all":
- self.languages = PawsxProcessor.supported_languages
- elif language not in PawsxProcessor.supported_languages:
- raise ValueError("language %s is not supported for PAWS-X task." %
- language)
- else:
- self.languages = [language]
-
- def get_train_examples(self, data_dir):
- """See base class."""
- lines = []
- for language in self.languages:
- if language == "en":
- train_tsv = "train.tsv"
- else:
- train_tsv = "translated_train.tsv"
- # Skips the header.
- lines.extend(
- self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
-
- examples = []
- for i, line in enumerate(lines):
- guid = "train-%d" % i
- text_a = self.process_text_fn(line[1])
- text_b = self.process_text_fn(line[2])
- label = self.process_text_fn(line[3])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- lines = []
- for lang in PawsxProcessor.supported_languages:
- lines.extend(
- self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
-
- examples = []
- for i, line in enumerate(lines):
- guid = "dev-%d" % i
- text_a = self.process_text_fn(line[1])
- text_b = self.process_text_fn(line[2])
- label = self.process_text_fn(line[3])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_test_examples(self, data_dir):
- """See base class."""
- examples_by_lang = {k: [] for k in self.supported_languages}
- for lang in self.supported_languages:
- lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
- for i, line in enumerate(lines):
- guid = "test-%d" % i
- text_a = self.process_text_fn(line[1])
- text_b = self.process_text_fn(line[2])
- label = self.process_text_fn(line[3])
- examples_by_lang[lang].append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples_by_lang
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "XTREME-PAWS-X"
-
-
-class QnliProcessor(DefaultGLUEDataProcessor):
- """Processor for the QNLI data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- return ["entailment", "not_entailment"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "QNLI"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "entailment"
- text_a = self.process_text_fn(example["question"])
- text_b = self.process_text_fn(example["sentence"])
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class QqpProcessor(DefaultGLUEDataProcessor):
- """Processor for the QQP data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "QQP"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "0"
- text_a = self.process_text_fn(example["question1"])
- text_b = self.process_text_fn(example["question2"])
- if set_type != "test":
- label = str(example["label"])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class RteProcessor(DefaultGLUEDataProcessor):
- """Processor for the RTE data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- # All datasets are converted to 2-class split, where for 3-class datasets we
- # collapse neutral and contradiction into not_entailment.
- return ["entailment", "not_entailment"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "RTE"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "entailment"
- text_a = self.process_text_fn(example["sentence1"])
- text_b = self.process_text_fn(example["sentence2"])
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class SstProcessor(DefaultGLUEDataProcessor):
- """Processor for the SST-2 data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "SST-2"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "0"
- text_a = self.process_text_fn(example["sentence"])
- if set_type != "test":
- label = str(example["label"])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
- return examples
-
-
-class StsBProcessor(DefaultGLUEDataProcessor):
- """Processor for the STS-B data set (GLUE version)."""
-
- def __init__(self, process_text_fn=tokenization.convert_to_unicode):
- super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
- self.is_regression = True
- self.label_type = float
- self._labels = None
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = 0.0
- text_a = self.process_text_fn(example["sentence1"])
- text_b = self.process_text_fn(example["sentence2"])
- if set_type != "test":
- label = self.label_type(example["label"])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
- def get_labels(self):
- """See base class."""
- return self._labels
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "STS-B"
-
-
-class TfdsProcessor(DataProcessor):
- """Processor for generic text classification and regression TFDS data set.
-
- The TFDS parameters are expected to be provided in the tfds_params string, in
- a comma-separated list of parameter assignments.
- Examples:
- tfds_params="dataset=scicite,text_key=string"
- tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
- tfds_params="dataset=glue/cola,text_key=sentence"
- tfds_params="dataset=glue/sst2,text_key=sentence"
- tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
- tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
- tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
- "is_regression=true,label_type=float"
- tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
- "skip_label=-1"
- Possible parameters (please refer to the documentation of Tensorflow Datasets
- (TFDS) for the meaning of individual parameters):
- dataset: Required dataset name (potentially with subset and version number).
- data_dir: Optional TFDS source root directory.
- module_import: Optional Dataset module to import.
- train_split: Name of the train split (defaults to `train`).
- dev_split: Name of the dev split (defaults to `validation`).
- test_split: Name of the test split (defaults to `test`).
- text_key: Key of the text_a feature (defaults to `text`).
- text_b_key: Key of the second text feature if available.
- label_key: Key of the label feature (defaults to `label`).
- test_text_key: Key of the text feature to use in test set.
- test_text_b_key: Key of the second text feature to use in test set.
- test_label: String to be used as the label for all test examples.
- label_type: Type of the label key (defaults to `int`).
- weight_key: Key of the float sample weight (is not used if not provided).
- is_regression: Whether the task is a regression problem (defaults to False).
- skip_label: Skip examples with given label (defaults to None).
- """
-
- def __init__(self,
- tfds_params,
- process_text_fn=tokenization.convert_to_unicode):
- super(TfdsProcessor, self).__init__(process_text_fn)
- self._process_tfds_params_str(tfds_params)
- if self.module_import:
- importlib.import_module(self.module_import)
-
- self.dataset, info = tfds.load(
- self.dataset_name, data_dir=self.data_dir, with_info=True)
- if self.is_regression:
- self._labels = None
- else:
- self._labels = list(range(info.features[self.label_key].num_classes))
-
- def _process_tfds_params_str(self, params_str):
- """Extracts TFDS parameters from a comma-separated assignments string."""
- dtype_map = {"int": int, "float": float}
- cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]
-
- tuples = [x.split("=") for x in params_str.split(",")]
- d = {k.strip(): v.strip() for k, v in tuples}
- self.dataset_name = d["dataset"] # Required.
- self.data_dir = d.get("data_dir", None)
- self.module_import = d.get("module_import", None)
- self.train_split = d.get("train_split", "train")
- self.dev_split = d.get("dev_split", "validation")
- self.test_split = d.get("test_split", "test")
- self.text_key = d.get("text_key", "text")
- self.text_b_key = d.get("text_b_key", None)
- self.label_key = d.get("label_key", "label")
- self.test_text_key = d.get("test_text_key", self.text_key)
- self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
- self.test_label = d.get("test_label", "test_example")
- self.label_type = dtype_map[d.get("label_type", "int")]
- self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
- self.weight_key = d.get("weight_key", None)
- self.skip_label = d.get("skip_label", None)
- if self.skip_label is not None:
- self.skip_label = self.label_type(self.skip_label)
-
- def get_train_examples(self, data_dir):
- assert data_dir is None
- return self._create_examples(self.train_split, "train")
-
- def get_dev_examples(self, data_dir):
- assert data_dir is None
- return self._create_examples(self.dev_split, "dev")
-
- def get_test_examples(self, data_dir):
- assert data_dir is None
- return self._create_examples(self.test_split, "test")
-
- def get_labels(self):
- return self._labels
-
- def get_processor_name(self):
- return "TFDS_" + self.dataset_name
-
- def _create_examples(self, split_name, set_type):
- """Creates examples for the training/dev/test sets."""
- if split_name not in self.dataset:
- raise ValueError("Split {} not available.".format(split_name))
- dataset = self.dataset[split_name].as_numpy_iterator()
- examples = []
- text_b, weight = None, None
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- if set_type == "test":
- text_a = self.process_text_fn(example[self.test_text_key])
- if self.test_text_b_key:
- text_b = self.process_text_fn(example[self.test_text_b_key])
- label = self.test_label
- else:
- text_a = self.process_text_fn(example[self.text_key])
- if self.text_b_key:
- text_b = self.process_text_fn(example[self.text_b_key])
- label = self.label_type(example[self.label_key])
- if self.skip_label is not None and label == self.skip_label:
- continue
- if self.weight_key:
- weight = float(example[self.weight_key])
- examples.append(
- InputExample(
- guid=guid,
- text_a=text_a,
- text_b=text_b,
- label=label,
- weight=weight))
- return examples
-
-
-class WnliProcessor(DefaultGLUEDataProcessor):
- """Processor for the WNLI data set (GLUE version)."""
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "WNLI"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator()
- dataset = list(dataset)
- dataset.sort(key=lambda x: x["idx"])
- examples = []
- for i, example in enumerate(dataset):
- guid = "%s-%s" % (set_type, i)
- label = "0"
- text_a = self.process_text_fn(example["sentence1"])
- text_b = self.process_text_fn(example["sentence2"])
- if set_type != "test":
- label = str(example["label"])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label,
- weight=None))
- return examples
-
-
-class XnliProcessor(DataProcessor):
- """Processor for the XNLI data set."""
- supported_languages = [
- "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
- "ur", "vi", "zh"
- ]
-
- def __init__(self,
- language="en",
- process_text_fn=tokenization.convert_to_unicode):
- super(XnliProcessor, self).__init__(process_text_fn)
- if language == "all":
- self.languages = XnliProcessor.supported_languages
- elif language not in XnliProcessor.supported_languages:
- raise ValueError("language %s is not supported for XNLI task." % language)
- else:
- self.languages = [language]
-
- def get_train_examples(self, data_dir):
- """See base class."""
- lines = []
- for language in self.languages:
- # Skips the header.
- lines.extend(
- self._read_tsv(
- os.path.join(data_dir, "multinli",
- "multinli.train.%s.tsv" % language))[1:])
-
- examples = []
- for i, line in enumerate(lines):
- guid = "train-%d" % i
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- if label == self.process_text_fn("contradictory"):
- label = self.process_text_fn("contradiction")
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
- examples = []
- for i, line in enumerate(lines):
- if i == 0:
- continue
- guid = "dev-%d" % i
- text_a = self.process_text_fn(line[6])
- text_b = self.process_text_fn(line[7])
- label = self.process_text_fn(line[1])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_test_examples(self, data_dir):
- """See base class."""
- lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
- examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
- for i, line in enumerate(lines):
- if i == 0:
- continue
- guid = "test-%d" % i
- language = self.process_text_fn(line[0])
- text_a = self.process_text_fn(line[6])
- text_b = self.process_text_fn(line[7])
- label = self.process_text_fn(line[1])
- examples_by_lang[language].append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples_by_lang
-
- def get_labels(self):
- """See base class."""
- return ["contradiction", "entailment", "neutral"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "XNLI"
-
-
-class XtremePawsxProcessor(DataProcessor):
- """Processor for the XTREME PAWS-X data set."""
- supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
-
- def __init__(self,
- process_text_fn=tokenization.convert_to_unicode,
- translated_data_dir=None,
- only_use_en_dev=True):
- """See base class.
-
- Args:
- process_text_fn: See base class.
- translated_data_dir: If specified, will also include translated data in
- the training and testing data.
- only_use_en_dev: If True, only use english dev data. Otherwise, use dev
- data from all languages.
- """
- super(XtremePawsxProcessor, self).__init__(process_text_fn)
- self.translated_data_dir = translated_data_dir
- self.only_use_en_dev = only_use_en_dev
-
- def get_train_examples(self, data_dir):
- """See base class."""
- examples = []
- if self.translated_data_dir is None:
- lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
- for i, line in enumerate(lines):
- guid = "train-%d" % i
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- else:
- for lang in self.supported_languages:
- lines = self._read_tsv(
- os.path.join(self.translated_data_dir, "translate-train",
- f"en-{lang}-translated.tsv"))
- for i, line in enumerate(lines):
- guid = f"train-{lang}-{i}"
- text_a = self.process_text_fn(line[2])
- text_b = self.process_text_fn(line[3])
- label = self.process_text_fn(line[4])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- examples = []
- if self.only_use_en_dev:
- lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
- for i, line in enumerate(lines):
- guid = "dev-%d" % i
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- else:
- for lang in self.supported_languages:
- lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
- for i, line in enumerate(lines):
- guid = f"dev-{lang}-{i}"
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_test_examples(self, data_dir):
- """See base class."""
- examples_by_lang = {}
- for lang in self.supported_languages:
- examples_by_lang[lang] = []
- lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
- for i, line in enumerate(lines):
- guid = f"test-{lang}-{i}"
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = "0"
- examples_by_lang[lang].append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- if self.translated_data_dir is not None:
- for lang in self.supported_languages:
- if lang == "en":
- continue
- examples_by_lang[f"{lang}-en"] = []
- lines = self._read_tsv(
- os.path.join(self.translated_data_dir, "translate-test",
- f"test-{lang}-en-translated.tsv"))
- for i, line in enumerate(lines):
- guid = f"test-{lang}-en-{i}"
- text_a = self.process_text_fn(line[2])
- text_b = self.process_text_fn(line[3])
- label = "0"
- examples_by_lang[f"{lang}-en"].append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples_by_lang
-
- def get_labels(self):
- """See base class."""
- return ["0", "1"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "XTREME-PAWS-X"
-
-
-class XtremeXnliProcessor(DataProcessor):
- """Processor for the XTREME XNLI data set."""
- supported_languages = [
- "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
- "ur", "vi", "zh"
- ]
-
- def __init__(self,
- process_text_fn=tokenization.convert_to_unicode,
- translated_data_dir=None,
- only_use_en_dev=True):
- """See base class.
-
- Args:
- process_text_fn: See base class.
- translated_data_dir: If specified, will also include translated data in
- the training data.
- only_use_en_dev: If True, only use english dev data. Otherwise, use dev
- data from all languages.
- """
- super(XtremeXnliProcessor, self).__init__(process_text_fn)
- self.translated_data_dir = translated_data_dir
- self.only_use_en_dev = only_use_en_dev
-
- def get_train_examples(self, data_dir):
- """See base class."""
- lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
-
- examples = []
- if self.translated_data_dir is None:
- for i, line in enumerate(lines):
- guid = "train-%d" % i
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- if label == self.process_text_fn("contradictory"):
- label = self.process_text_fn("contradiction")
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- else:
- for lang in self.supported_languages:
- lines = self._read_tsv(
- os.path.join(self.translated_data_dir, "translate-train",
- f"en-{lang}-translated.tsv"))
- for i, line in enumerate(lines):
- guid = f"train-{lang}-{i}"
- text_a = self.process_text_fn(line[2])
- text_b = self.process_text_fn(line[3])
- label = self.process_text_fn(line[4])
- if label == self.process_text_fn("contradictory"):
- label = self.process_text_fn("contradiction")
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_dev_examples(self, data_dir):
- """See base class."""
- examples = []
- if self.only_use_en_dev:
- lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
- for i, line in enumerate(lines):
- guid = "dev-%d" % i
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- else:
- for lang in self.supported_languages:
- lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
- for i, line in enumerate(lines):
- guid = f"dev-{lang}-{i}"
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = self.process_text_fn(line[2])
- if label == self.process_text_fn("contradictory"):
- label = self.process_text_fn("contradiction")
- examples.append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
- def get_test_examples(self, data_dir):
- """See base class."""
- examples_by_lang = {}
- for lang in self.supported_languages:
- examples_by_lang[lang] = []
- lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
- for i, line in enumerate(lines):
- guid = f"test-{lang}-{i}"
- text_a = self.process_text_fn(line[0])
- text_b = self.process_text_fn(line[1])
- label = "contradiction"
- examples_by_lang[lang].append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- if self.translated_data_dir is not None:
- for lang in self.supported_languages:
- if lang == "en":
- continue
- examples_by_lang[f"{lang}-en"] = []
- lines = self._read_tsv(
- os.path.join(self.translated_data_dir, "translate-test",
- f"test-{lang}-en-translated.tsv"))
- for i, line in enumerate(lines):
- guid = f"test-{lang}-en-{i}"
- text_a = self.process_text_fn(line[2])
- text_b = self.process_text_fn(line[3])
- label = "contradiction"
- examples_by_lang[f"{lang}-en"].append(
- InputExample(
- guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples_by_lang
-
- def get_labels(self):
- """See base class."""
- return ["contradiction", "entailment", "neutral"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "XTREME-XNLI"
-
-
-def convert_single_example(ex_index, example, label_list, max_seq_length,
- tokenizer):
- """Converts a single `InputExample` into a single `InputFeatures`."""
- label_map = {}
- if label_list:
- for (i, label) in enumerate(label_list):
- label_map[label] = i
-
- tokens_a = tokenizer.tokenize(example.text_a)
- tokens_b = None
- if example.text_b:
- tokens_b = tokenizer.tokenize(example.text_b)
-
- if tokens_b:
- # Modifies `tokens_a` and `tokens_b` in place so that the total
- # length is less than the specified length.
- # Account for [CLS], [SEP], [SEP] with "- 3"
- _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
- else:
- # Account for [CLS] and [SEP] with "- 2"
- if len(tokens_a) > max_seq_length - 2:
- tokens_a = tokens_a[0:(max_seq_length - 2)]
-
- seg_id_a = 0
- seg_id_b = 1
- seg_id_cls = 0
- seg_id_pad = 0
-
- # The convention in BERT is:
- # (a) For sequence pairs:
- # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
- # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
- # (b) For single sequences:
- # tokens: [CLS] the dog is hairy . [SEP]
- # type_ids: 0 0 0 0 0 0 0
- #
- # Where "type_ids" are used to indicate whether this is the first
- # sequence or the second sequence. The embedding vectors for `type=0` and
- # `type=1` were learned during pre-training and are added to the wordpiece
- # embedding vector (and position vector). This is not *strictly* necessary
- # since the [SEP] token unambiguously separates the sequences, but it makes
- # it easier for the model to learn the concept of sequences.
- #
- # For classification tasks, the first vector (corresponding to [CLS]) is
- # used as the "sentence vector". Note that this only makes sense because
- # the entire model is fine-tuned.
- tokens = []
- segment_ids = []
- tokens.append("[CLS]")
- segment_ids.append(seg_id_cls)
- for token in tokens_a:
- tokens.append(token)
- segment_ids.append(seg_id_a)
- tokens.append("[SEP]")
- segment_ids.append(seg_id_a)
-
- if tokens_b:
- for token in tokens_b:
- tokens.append(token)
- segment_ids.append(seg_id_b)
- tokens.append("[SEP]")
- segment_ids.append(seg_id_b)
-
- input_ids = tokenizer.convert_tokens_to_ids(tokens)
-
- # The mask has 1 for real tokens and 0 for padding tokens. Only real
- # tokens are attended to.
- input_mask = [1] * len(input_ids)
-
- # Zero-pad up to the sequence length.
- while len(input_ids) < max_seq_length:
- input_ids.append(0)
- input_mask.append(0)
- segment_ids.append(seg_id_pad)
-
- assert len(input_ids) == max_seq_length
- assert len(input_mask) == max_seq_length
- assert len(segment_ids) == max_seq_length
-
- label_id = label_map[example.label] if label_map else example.label
- if ex_index < 5:
- logging.info("*** Example ***")
- logging.info("guid: %s", (example.guid))
- logging.info("tokens: %s",
- " ".join([tokenization.printable_text(x) for x in tokens]))
- logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
- logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
- logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
- logging.info("label: %s (id = %s)", example.label, str(label_id))
- logging.info("weight: %s", example.weight)
- logging.info("example_id: %s", example.example_id)
-
- feature = InputFeatures(
- input_ids=input_ids,
- input_mask=input_mask,
- segment_ids=segment_ids,
- label_id=label_id,
- is_real_example=True,
- weight=example.weight,
- example_id=example.example_id)
-
- return feature
-
-
-class AXgProcessor(DataProcessor):
- """Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
-
- def get_test_examples(self, data_dir):
- """See base class."""
- return self._create_examples(
- self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
-
- def get_labels(self):
- """See base class."""
- return ["entailment", "not_entailment"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "AXg"
-
- def _create_examples(self, lines, set_type):
- """Creates examples for the training/dev/test sets."""
- examples = []
- for line in lines:
- guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
- text_a = self.process_text_fn(line["premise"])
- text_b = self.process_text_fn(line["hypothesis"])
- label = self.process_text_fn(line["label"])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
-
-class BoolQProcessor(DefaultGLUEDataProcessor):
- """Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""
-
- def get_labels(self):
- """See base class."""
- return ["True", "False"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "BoolQ"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "super_glue/boolq", split=set_type, try_gcs=True).as_numpy_iterator()
- examples = []
- for example in dataset:
- guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
- text_a = self.process_text_fn(example["question"])
- text_b = self.process_text_fn(example["passage"])
- label = "False"
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
-
-class CBProcessor(DefaultGLUEDataProcessor):
- """Processor for the CB dataset (SuperGLUE diagnostics dataset)."""
-
- def get_labels(self):
- """See base class."""
- return ["entailment", "neutral", "contradiction"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "CB"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- dataset = tfds.load(
- "super_glue/cb", split=set_type, try_gcs=True).as_numpy_iterator()
- examples = []
- for example in dataset:
- guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
- text_a = self.process_text_fn(example["premise"])
- text_b = self.process_text_fn(example["hypothesis"])
- label = "entailment"
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
-
-class SuperGLUERTEProcessor(DefaultGLUEDataProcessor):
- """Processor for the RTE dataset (SuperGLUE version)."""
-
- def get_labels(self):
- """See base class."""
- # All datasets are converted to 2-class split, where for 3-class datasets we
- # collapse neutral and contradiction into not_entailment.
- return ["entailment", "not_entailment"]
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "RTESuperGLUE"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- examples = []
- dataset = tfds.load(
- "super_glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
- for example in dataset:
- guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
- text_a = self.process_text_fn(example["premise"])
- text_b = self.process_text_fn(example["hypothesis"])
- label = "entailment"
- if set_type != "test":
- label = self.get_labels()[example["label"]]
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
- return examples
-
-
-class WiCInputExample(InputExample):
- """Processor for the WiC dataset (SuperGLUE version)."""
-
- def __init__(self,
- guid,
- text_a,
- text_b=None,
- label=None,
- word=None,
- weight=None,
- example_id=None):
- """A single training/test example for simple seq regression/classification."""
- super(WiCInputExample, self).__init__(guid, text_a, text_b, label, weight,
- example_id)
- self.word = word
-
-
-class WiCProcessor(DefaultGLUEDataProcessor):
- """Processor for the RTE dataset (SuperGLUE version)."""
-
- def get_labels(self):
- """Not used."""
- return []
-
- @staticmethod
- def get_processor_name():
- """See base class."""
- return "RTESuperGLUE"
-
- def _create_examples_tfds(self, set_type):
- """Creates examples for the training/dev/test sets."""
- examples = []
- dataset = tfds.load(
- "super_glue/wic", split=set_type, try_gcs=True).as_numpy_iterator()
- for example in dataset:
- guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
- text_a = self.process_text_fn(example["sentence1"])
- text_b = self.process_text_fn(example["sentence2"])
- word = self.process_text_fn(example["word"])
- label = 0
- if set_type != "test":
- label = example["label"]
- examples.append(
- WiCInputExample(
- guid=guid, text_a=text_a, text_b=text_b, word=word, label=label))
- return examples
-
- def featurize_example(self, ex_index, example, label_list, max_seq_length,
- tokenizer):
- """Here we concate sentence1, sentence2, word together with [SEP] tokens."""
- del label_list
- tokens_a = tokenizer.tokenize(example.text_a)
- tokens_b = tokenizer.tokenize(example.text_b)
- tokens_word = tokenizer.tokenize(example.word)
-
- # Modifies `tokens_a` and `tokens_b` in place so that the total
- # length is less than the specified length.
- # Account for [CLS], [SEP], [SEP], [SEP] with "- 4"
- # Here we only pop out the first two sentence tokens.
- _truncate_seq_pair(tokens_a, tokens_b,
- max_seq_length - 4 - len(tokens_word))
-
- seg_id_a = 0
- seg_id_b = 1
- seg_id_c = 2
- seg_id_cls = 0
- seg_id_pad = 0
-
- tokens = []
- segment_ids = []
- tokens.append("[CLS]")
- segment_ids.append(seg_id_cls)
- for token in tokens_a:
- tokens.append(token)
- segment_ids.append(seg_id_a)
- tokens.append("[SEP]")
- segment_ids.append(seg_id_a)
-
- for token in tokens_b:
- tokens.append(token)
- segment_ids.append(seg_id_b)
-
- tokens.append("[SEP]")
- segment_ids.append(seg_id_b)
-
- for token in tokens_word:
- tokens.append(token)
- segment_ids.append(seg_id_c)
-
- tokens.append("[SEP]")
- segment_ids.append(seg_id_c)
-
- input_ids = tokenizer.convert_tokens_to_ids(tokens)
-
- # The mask has 1 for real tokens and 0 for padding tokens. Only real
- # tokens are attended to.
- input_mask = [1] * len(input_ids)
-
- # Zero-pad up to the sequence length.
- while len(input_ids) < max_seq_length:
- input_ids.append(0)
- input_mask.append(0)
- segment_ids.append(seg_id_pad)
-
- assert len(input_ids) == max_seq_length
- assert len(input_mask) == max_seq_length
- assert len(segment_ids) == max_seq_length
-
- label_id = example.label
- if ex_index < 5:
- logging.info("*** Example ***")
- logging.info("guid: %s", (example.guid))
- logging.info("tokens: %s",
- " ".join([tokenization.printable_text(x) for x in tokens]))
- logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
- logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
- logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
- logging.info("label: %s (id = %s)", example.label, str(label_id))
- logging.info("weight: %s", example.weight)
- logging.info("example_id: %s", example.example_id)
-
- feature = InputFeatures(
- input_ids=input_ids,
- input_mask=input_mask,
- segment_ids=segment_ids,
- label_id=label_id,
- is_real_example=True,
- weight=example.weight,
- example_id=example.example_id)
-
- return feature
-
-
-def file_based_convert_examples_to_features(examples,
- label_list,
- max_seq_length,
- tokenizer,
- output_file,
- label_type=None,
- featurize_fn=None):
- """Convert a set of `InputExample`s to a TFRecord file."""
-
- tf.io.gfile.makedirs(os.path.dirname(output_file))
- writer = tf.io.TFRecordWriter(output_file)
-
- for ex_index, example in enumerate(examples):
- if ex_index % 10000 == 0:
- logging.info("Writing example %d of %d", ex_index, len(examples))
-
- if featurize_fn:
- feature = featurize_fn(ex_index, example, label_list, max_seq_length,
- tokenizer)
- else:
- feature = convert_single_example(ex_index, example, label_list,
- max_seq_length, tokenizer)
-
- def create_int_feature(values):
- f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
- return f
-
- def create_float_feature(values):
- f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
- return f
-
- features = collections.OrderedDict()
- features["input_ids"] = create_int_feature(feature.input_ids)
- features["input_mask"] = create_int_feature(feature.input_mask)
- features["segment_ids"] = create_int_feature(feature.segment_ids)
- if label_type is not None and label_type == float:
- features["label_ids"] = create_float_feature([feature.label_id])
- elif feature.label_id is not None:
- features["label_ids"] = create_int_feature([feature.label_id])
- features["is_real_example"] = create_int_feature(
- [int(feature.is_real_example)])
- if feature.weight is not None:
- features["weight"] = create_float_feature([feature.weight])
- if feature.example_id is not None:
- features["example_id"] = create_int_feature([feature.example_id])
- else:
- features["example_id"] = create_int_feature([ex_index])
-
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
- writer.write(tf_example.SerializeToString())
- writer.close()
-
-
-def _truncate_seq_pair(tokens_a, tokens_b, max_length):
- """Truncates a sequence pair in place to the maximum length."""
-
- # This is a simple heuristic which will always truncate the longer sequence
- # one token at a time. This makes more sense than truncating an equal percent
- # of tokens from each, since if one sequence is very short then each token
- # that's truncated likely contains more information than a longer sequence.
- while True:
- total_length = len(tokens_a) + len(tokens_b)
- if total_length <= max_length:
- break
- if len(tokens_a) > len(tokens_b):
- tokens_a.pop()
- else:
- tokens_b.pop()
-
-
-def generate_tf_record_from_data_file(processor,
- data_dir,
- tokenizer,
- train_data_output_path=None,
- eval_data_output_path=None,
- test_data_output_path=None,
- max_seq_length=128):
- """Generates and saves training data into a tf record file.
-
- Args:
- processor: Input processor object to be used for generating data. Subclass
- of `DataProcessor`.
- data_dir: Directory that contains train/eval/test data to process.
- tokenizer: The tokenizer to be applied on the data.
- train_data_output_path: Output to which processed tf record for training
- will be saved.
- eval_data_output_path: Output to which processed tf record for evaluation
- will be saved.
- test_data_output_path: Output to which processed tf record for testing
- will be saved. Must be a pattern template with {} if processor has
- language specific test data.
- max_seq_length: Maximum sequence length of the to be generated
- training/eval data.
-
- Returns:
- A dictionary containing input meta data.
- """
- assert train_data_output_path or eval_data_output_path
-
- label_list = processor.get_labels()
- label_type = getattr(processor, "label_type", None)
- is_regression = getattr(processor, "is_regression", False)
- has_sample_weights = getattr(processor, "weight_key", False)
-
- num_training_data = 0
- if train_data_output_path:
- train_input_data_examples = processor.get_train_examples(data_dir)
- file_based_convert_examples_to_features(train_input_data_examples,
- label_list, max_seq_length,
- tokenizer, train_data_output_path,
- label_type,
- processor.featurize_example)
- num_training_data = len(train_input_data_examples)
-
- if eval_data_output_path:
- eval_input_data_examples = processor.get_dev_examples(data_dir)
- file_based_convert_examples_to_features(eval_input_data_examples,
- label_list, max_seq_length,
- tokenizer, eval_data_output_path,
- label_type,
- processor.featurize_example)
-
- meta_data = {
- "processor_type": processor.get_processor_name(),
- "train_data_size": num_training_data,
- "max_seq_length": max_seq_length,
- }
-
- if test_data_output_path:
- test_input_data_examples = processor.get_test_examples(data_dir)
- if isinstance(test_input_data_examples, dict):
- for language, examples in test_input_data_examples.items():
- file_based_convert_examples_to_features(
- examples, label_list, max_seq_length, tokenizer,
- test_data_output_path.format(language), label_type,
- processor.featurize_example)
- meta_data["test_{}_data_size".format(language)] = len(examples)
- else:
- file_based_convert_examples_to_features(test_input_data_examples,
- label_list, max_seq_length,
- tokenizer, test_data_output_path,
- label_type,
- processor.featurize_example)
- meta_data["test_data_size"] = len(test_input_data_examples)
-
- if is_regression:
- meta_data["task_type"] = "bert_regression"
- meta_data["label_type"] = {int: "int", float: "float"}[label_type]
- else:
- meta_data["task_type"] = "bert_classification"
- meta_data["num_labels"] = len(processor.get_labels())
- if has_sample_weights:
- meta_data["has_sample_weights"] = True
-
- if eval_data_output_path:
- meta_data["eval_data_size"] = len(eval_input_data_examples)
-
- return meta_data
+# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""BERT library to process data for classification task."""
+
+import collections
+import csv
+import importlib
+import json
+import os
+
+from absl import logging
+import tensorflow as tf, tf_keras
+import tensorflow_datasets as tfds
+
+import tokenization
+
+
+class InputExample(object):
+ """A single training/test example for simple seq regression/classification."""
+
+ def __init__(self,
+ guid,
+ text_a,
+ text_b=None,
+ label=None,
+ weight=None,
+ example_id=None):
+ """Constructs a InputExample.
+
+ Args:
+ guid: Unique id for the example.
+ text_a: string. The untokenized text of the first sequence. For single
+ sequence tasks, only this sequence must be specified.
+ text_b: (Optional) string. The untokenized text of the second sequence.
+ Only must be specified for sequence pair tasks.
+ label: (Optional) string for classification, float for regression. The
+ label of the example. This should be specified for train and dev
+ examples, but not for test examples.
+ weight: (Optional) float. The weight of the example to be used during
+ training.
+ example_id: (Optional) int. The int identification number of example in
+ the corpus.
+ """
+ self.guid = guid
+ self.text_a = text_a
+ self.text_b = text_b
+ self.label = label
+ self.weight = weight
+ self.example_id = example_id
+
+
+class InputFeatures(object):
+ """A single set of features of data."""
+
+ def __init__(self,
+ input_ids,
+ input_mask,
+ segment_ids,
+ label_id,
+ is_real_example=True,
+ weight=None,
+ example_id=None):
+ self.input_ids = input_ids
+ self.input_mask = input_mask
+ self.segment_ids = segment_ids
+ self.label_id = label_id
+ self.is_real_example = is_real_example
+ self.weight = weight
+ self.example_id = example_id
+
+
+class DataProcessor(object):
+ """Base class for converters for seq regression/classification datasets."""
+
+ def __init__(self, process_text_fn=tokenization.convert_to_unicode):
+ self.process_text_fn = process_text_fn
+ self.is_regression = False
+ self.label_type = None
+
+ def get_train_examples(self, data_dir):
+ """Gets a collection of `InputExample`s for the train set."""
+ raise NotImplementedError()
+
+ def get_dev_examples(self, data_dir):
+ """Gets a collection of `InputExample`s for the dev set."""
+ raise NotImplementedError()
+
+ def get_test_examples(self, data_dir):
+ """Gets a collection of `InputExample`s for prediction."""
+ raise NotImplementedError()
+
+ def get_labels(self):
+ """Gets the list of labels for this data set."""
+ raise NotImplementedError()
+
+ @staticmethod
+ def get_processor_name():
+ """Gets the string identifier of the processor."""
+ raise NotImplementedError()
+
+ @classmethod
+ def _read_tsv(cls, input_file, quotechar=None):
+ """Reads a tab separated value file."""
+ with tf.io.gfile.GFile(input_file, "r") as f:
+ reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
+ lines = []
+ for line in reader:
+ lines.append(line)
+ return lines
+
+ @classmethod
+ def _read_jsonl(cls, input_file):
+ """Reads a json line file."""
+ with tf.io.gfile.GFile(input_file, "r") as f:
+ lines = []
+ for json_str in f:
+ lines.append(json.loads(json_str))
+ return lines
+
+ def featurize_example(self, *kargs, **kwargs):
+ """Converts a single `InputExample` into a single `InputFeatures`."""
+ return convert_single_example(*kargs, **kwargs)
+
+
+class DefaultGLUEDataProcessor(DataProcessor):
+ """Processor for the SuperGLUE dataset."""
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ return self._create_examples_tfds("train")
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ return self._create_examples_tfds("validation")
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ return self._create_examples_tfds("test")
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ raise NotImplementedError()
+
+
+class AxProcessor(DataProcessor):
+ """Processor for the AX dataset (GLUE diagnostics dataset)."""
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ train_mnli_dataset = tfds.load(
+ "glue/mnli", split="train", try_gcs=True).as_numpy_iterator()
+ return self._create_examples_tfds(train_mnli_dataset, "train")
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ val_mnli_dataset = tfds.load(
+ "glue/mnli", split="validation_matched",
+ try_gcs=True).as_numpy_iterator()
+ return self._create_examples_tfds(val_mnli_dataset, "validation")
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ test_ax_dataset = tfds.load(
+ "glue/ax", split="test", try_gcs=True).as_numpy_iterator()
+ return self._create_examples_tfds(test_ax_dataset, "test")
+
+ def get_labels(self):
+ """See base class."""
+ return ["contradiction", "entailment", "neutral"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "AX"
+
+ def _create_examples_tfds(self, dataset, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "contradiction"
+ text_a = self.process_text_fn(example["hypothesis"])
+ text_b = self.process_text_fn(example["premise"])
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class ColaProcessor(DefaultGLUEDataProcessor):
+ """Processor for the CoLA data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "COLA"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "0"
+ text_a = self.process_text_fn(example["sentence"])
+ if set_type != "test":
+ label = str(example["label"])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
+ return examples
+
+
+class ImdbProcessor(DataProcessor):
+ """Processor for the IMDb dataset."""
+
+ def get_labels(self):
+ return ["neg", "pos"]
+
+ def get_train_examples(self, data_dir):
+ return self._create_examples(os.path.join(data_dir, "train"))
+
+ def get_dev_examples(self, data_dir):
+ return self._create_examples(os.path.join(data_dir, "test"))
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "IMDB"
+
+ def _create_examples(self, data_dir):
+ """Creates examples."""
+ examples = []
+ for label in ["neg", "pos"]:
+ cur_dir = os.path.join(data_dir, label)
+ for filename in tf.io.gfile.listdir(cur_dir):
+ if not filename.endswith("txt"):
+ continue
+
+ if len(examples) % 1000 == 0:
+ logging.info("Loading dev example %d", len(examples))
+
+ path = os.path.join(cur_dir, filename)
+ with tf.io.gfile.GFile(path, "r") as f:
+ text = f.read().strip().replace("
", " ")
+ examples.append(
+ InputExample(
+ guid="unused_id", text_a=text, text_b=None, label=label))
+ return examples
+
+
+class MnliProcessor(DataProcessor):
+ """Processor for the MultiNLI data set (GLUE version)."""
+
+ def __init__(self,
+ mnli_type="matched",
+ process_text_fn=tokenization.convert_to_unicode):
+ super(MnliProcessor, self).__init__(process_text_fn)
+ self.dataset = tfds.load("glue/mnli", try_gcs=True)
+ if mnli_type not in ("matched", "mismatched"):
+ raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
+ self.mnli_type = mnli_type
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ return self._create_examples_tfds("train")
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ if self.mnli_type == "matched":
+ return self._create_examples_tfds("validation_matched")
+ else:
+ return self._create_examples_tfds("validation_mismatched")
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ if self.mnli_type == "matched":
+ return self._create_examples_tfds("test_matched")
+ else:
+ return self._create_examples_tfds("test_mismatched")
+
+ def get_labels(self):
+ """See base class."""
+ return ["contradiction", "entailment", "neutral"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "MNLI"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "contradiction"
+ text_a = self.process_text_fn(example["hypothesis"])
+ text_b = self.process_text_fn(example["premise"])
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class MrpcProcessor(DefaultGLUEDataProcessor):
+ """Processor for the MRPC data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "MRPC"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "0"
+ text_a = self.process_text_fn(example["sentence1"])
+ text_b = self.process_text_fn(example["sentence2"])
+ if set_type != "test":
+ label = str(example["label"])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class PawsxProcessor(DataProcessor):
+ """Processor for the PAWS-X data set."""
+ supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
+
+ def __init__(self,
+ language="en",
+ process_text_fn=tokenization.convert_to_unicode):
+ super(PawsxProcessor, self).__init__(process_text_fn)
+ if language == "all":
+ self.languages = PawsxProcessor.supported_languages
+ elif language not in PawsxProcessor.supported_languages:
+ raise ValueError("language %s is not supported for PAWS-X task." %
+ language)
+ else:
+ self.languages = [language]
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ lines = []
+ for language in self.languages:
+ if language == "en":
+ train_tsv = "train.tsv"
+ else:
+ train_tsv = "translated_train.tsv"
+ # Skips the header.
+ lines.extend(
+ self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
+
+ examples = []
+ for i, line in enumerate(lines):
+ guid = "train-%d" % i
+ text_a = self.process_text_fn(line[1])
+ text_b = self.process_text_fn(line[2])
+ label = self.process_text_fn(line[3])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ lines = []
+ for lang in PawsxProcessor.supported_languages:
+ lines.extend(
+ self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
+
+ examples = []
+ for i, line in enumerate(lines):
+ guid = "dev-%d" % i
+ text_a = self.process_text_fn(line[1])
+ text_b = self.process_text_fn(line[2])
+ label = self.process_text_fn(line[3])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ examples_by_lang = {k: [] for k in self.supported_languages}
+ for lang in self.supported_languages:
+ lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
+ for i, line in enumerate(lines):
+ guid = "test-%d" % i
+ text_a = self.process_text_fn(line[1])
+ text_b = self.process_text_fn(line[2])
+ label = self.process_text_fn(line[3])
+ examples_by_lang[lang].append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples_by_lang
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "XTREME-PAWS-X"
+
+
+class QnliProcessor(DefaultGLUEDataProcessor):
+ """Processor for the QNLI data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["entailment", "not_entailment"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "QNLI"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "entailment"
+ text_a = self.process_text_fn(example["question"])
+ text_b = self.process_text_fn(example["sentence"])
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class QqpProcessor(DefaultGLUEDataProcessor):
+ """Processor for the QQP data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "QQP"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "0"
+ text_a = self.process_text_fn(example["question1"])
+ text_b = self.process_text_fn(example["question2"])
+ if set_type != "test":
+ label = str(example["label"])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class RteProcessor(DefaultGLUEDataProcessor):
+ """Processor for the RTE data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ # All datasets are converted to 2-class split, where for 3-class datasets we
+ # collapse neutral and contradiction into not_entailment.
+ return ["entailment", "not_entailment"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "RTE"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "entailment"
+ text_a = self.process_text_fn(example["sentence1"])
+ text_b = self.process_text_fn(example["sentence2"])
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class SstProcessor(DefaultGLUEDataProcessor):
+ """Processor for the SST-2 data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "SST-2"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "0"
+ text_a = self.process_text_fn(example["sentence"])
+ if set_type != "test":
+ label = str(example["label"])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
+ return examples
+
+
+class StsBProcessor(DefaultGLUEDataProcessor):
+ """Processor for the STS-B data set (GLUE version)."""
+
+ def __init__(self, process_text_fn=tokenization.convert_to_unicode):
+ super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
+ self.is_regression = True
+ self.label_type = float
+ self._labels = None
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = 0.0
+ text_a = self.process_text_fn(example["sentence1"])
+ text_b = self.process_text_fn(example["sentence2"])
+ if set_type != "test":
+ label = self.label_type(example["label"])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+ def get_labels(self):
+ """See base class."""
+ return self._labels
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "STS-B"
+
+
+class TfdsProcessor(DataProcessor):
+ """Processor for generic text classification and regression TFDS data set.
+
+ The TFDS parameters are expected to be provided in the tfds_params string, in
+ a comma-separated list of parameter assignments.
+ Examples:
+ tfds_params="dataset=scicite,text_key=string"
+ tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
+ tfds_params="dataset=glue/cola,text_key=sentence"
+ tfds_params="dataset=glue/sst2,text_key=sentence"
+ tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
+ tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
+ tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
+ "is_regression=true,label_type=float"
+ tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
+ "skip_label=-1"
+ Possible parameters (please refer to the documentation of Tensorflow Datasets
+ (TFDS) for the meaning of individual parameters):
+ dataset: Required dataset name (potentially with subset and version number).
+ data_dir: Optional TFDS source root directory.
+ module_import: Optional Dataset module to import.
+ train_split: Name of the train split (defaults to `train`).
+ dev_split: Name of the dev split (defaults to `validation`).
+ test_split: Name of the test split (defaults to `test`).
+ text_key: Key of the text_a feature (defaults to `text`).
+ text_b_key: Key of the second text feature if available.
+ label_key: Key of the label feature (defaults to `label`).
+ test_text_key: Key of the text feature to use in test set.
+ test_text_b_key: Key of the second text feature to use in test set.
+ test_label: String to be used as the label for all test examples.
+ label_type: Type of the label key (defaults to `int`).
+ weight_key: Key of the float sample weight (is not used if not provided).
+ is_regression: Whether the task is a regression problem (defaults to False).
+ skip_label: Skip examples with given label (defaults to None).
+ """
+
+ def __init__(self,
+ tfds_params,
+ process_text_fn=tokenization.convert_to_unicode):
+ super(TfdsProcessor, self).__init__(process_text_fn)
+ self._process_tfds_params_str(tfds_params)
+ if self.module_import:
+ importlib.import_module(self.module_import)
+
+ self.dataset, info = tfds.load(
+ self.dataset_name, data_dir=self.data_dir, with_info=True)
+ if self.is_regression:
+ self._labels = None
+ else:
+ self._labels = list(range(info.features[self.label_key].num_classes))
+
+ def _process_tfds_params_str(self, params_str):
+ """Extracts TFDS parameters from a comma-separated assignments string."""
+ dtype_map = {"int": int, "float": float}
+ cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]
+
+ tuples = [x.split("=") for x in params_str.split(",")]
+ d = {k.strip(): v.strip() for k, v in tuples}
+ self.dataset_name = d["dataset"] # Required.
+ self.data_dir = d.get("data_dir", None)
+ self.module_import = d.get("module_import", None)
+ self.train_split = d.get("train_split", "train")
+ self.dev_split = d.get("dev_split", "validation")
+ self.test_split = d.get("test_split", "test")
+ self.text_key = d.get("text_key", "text")
+ self.text_b_key = d.get("text_b_key", None)
+ self.label_key = d.get("label_key", "label")
+ self.test_text_key = d.get("test_text_key", self.text_key)
+ self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
+ self.test_label = d.get("test_label", "test_example")
+ self.label_type = dtype_map[d.get("label_type", "int")]
+ self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
+ self.weight_key = d.get("weight_key", None)
+ self.skip_label = d.get("skip_label", None)
+ if self.skip_label is not None:
+ self.skip_label = self.label_type(self.skip_label)
+
+ def get_train_examples(self, data_dir):
+ assert data_dir is None
+ return self._create_examples(self.train_split, "train")
+
+ def get_dev_examples(self, data_dir):
+ assert data_dir is None
+ return self._create_examples(self.dev_split, "dev")
+
+ def get_test_examples(self, data_dir):
+ assert data_dir is None
+ return self._create_examples(self.test_split, "test")
+
+ def get_labels(self):
+ return self._labels
+
+ def get_processor_name(self):
+ return "TFDS_" + self.dataset_name
+
+ def _create_examples(self, split_name, set_type):
+ """Creates examples for the training/dev/test sets."""
+ if split_name not in self.dataset:
+ raise ValueError("Split {} not available.".format(split_name))
+ dataset = self.dataset[split_name].as_numpy_iterator()
+ examples = []
+ text_b, weight = None, None
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ if set_type == "test":
+ text_a = self.process_text_fn(example[self.test_text_key])
+ if self.test_text_b_key:
+ text_b = self.process_text_fn(example[self.test_text_b_key])
+ label = self.test_label
+ else:
+ text_a = self.process_text_fn(example[self.text_key])
+ if self.text_b_key:
+ text_b = self.process_text_fn(example[self.text_b_key])
+ label = self.label_type(example[self.label_key])
+ if self.skip_label is not None and label == self.skip_label:
+ continue
+ if self.weight_key:
+ weight = float(example[self.weight_key])
+ examples.append(
+ InputExample(
+ guid=guid,
+ text_a=text_a,
+ text_b=text_b,
+ label=label,
+ weight=weight))
+ return examples
+
+
+class WnliProcessor(DefaultGLUEDataProcessor):
+ """Processor for the WNLI data set (GLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "WNLI"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator()
+ dataset = list(dataset)
+ dataset.sort(key=lambda x: x["idx"])
+ examples = []
+ for i, example in enumerate(dataset):
+ guid = "%s-%s" % (set_type, i)
+ label = "0"
+ text_a = self.process_text_fn(example["sentence1"])
+ text_b = self.process_text_fn(example["sentence2"])
+ if set_type != "test":
+ label = str(example["label"])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label,
+ weight=None))
+ return examples
+
+
+class XnliProcessor(DataProcessor):
+ """Processor for the XNLI data set."""
+ supported_languages = [
+ "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
+ "ur", "vi", "zh"
+ ]
+
+ def __init__(self,
+ language="en",
+ process_text_fn=tokenization.convert_to_unicode):
+ super(XnliProcessor, self).__init__(process_text_fn)
+ if language == "all":
+ self.languages = XnliProcessor.supported_languages
+ elif language not in XnliProcessor.supported_languages:
+ raise ValueError("language %s is not supported for XNLI task." % language)
+ else:
+ self.languages = [language]
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ lines = []
+ for language in self.languages:
+ # Skips the header.
+ lines.extend(
+ self._read_tsv(
+ os.path.join(data_dir, "multinli",
+ "multinli.train.%s.tsv" % language))[1:])
+
+ examples = []
+ for i, line in enumerate(lines):
+ guid = "train-%d" % i
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ if label == self.process_text_fn("contradictory"):
+ label = self.process_text_fn("contradiction")
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
+ examples = []
+ for i, line in enumerate(lines):
+ if i == 0:
+ continue
+ guid = "dev-%d" % i
+ text_a = self.process_text_fn(line[6])
+ text_b = self.process_text_fn(line[7])
+ label = self.process_text_fn(line[1])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
+ examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
+ for i, line in enumerate(lines):
+ if i == 0:
+ continue
+ guid = "test-%d" % i
+ language = self.process_text_fn(line[0])
+ text_a = self.process_text_fn(line[6])
+ text_b = self.process_text_fn(line[7])
+ label = self.process_text_fn(line[1])
+ examples_by_lang[language].append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples_by_lang
+
+ def get_labels(self):
+ """See base class."""
+ return ["contradiction", "entailment", "neutral"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "XNLI"
+
+
+class XtremePawsxProcessor(DataProcessor):
+ """Processor for the XTREME PAWS-X data set."""
+ supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
+
+ def __init__(self,
+ process_text_fn=tokenization.convert_to_unicode,
+ translated_data_dir=None,
+ only_use_en_dev=True):
+ """See base class.
+
+ Args:
+ process_text_fn: See base class.
+ translated_data_dir: If specified, will also include translated data in
+ the training and testing data.
+ only_use_en_dev: If True, only use english dev data. Otherwise, use dev
+ data from all languages.
+ """
+ super(XtremePawsxProcessor, self).__init__(process_text_fn)
+ self.translated_data_dir = translated_data_dir
+ self.only_use_en_dev = only_use_en_dev
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ examples = []
+ if self.translated_data_dir is None:
+ lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
+ for i, line in enumerate(lines):
+ guid = "train-%d" % i
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ else:
+ for lang in self.supported_languages:
+ lines = self._read_tsv(
+ os.path.join(self.translated_data_dir, "translate-train",
+ f"en-{lang}-translated.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"train-{lang}-{i}"
+ text_a = self.process_text_fn(line[2])
+ text_b = self.process_text_fn(line[3])
+ label = self.process_text_fn(line[4])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ examples = []
+ if self.only_use_en_dev:
+ lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
+ for i, line in enumerate(lines):
+ guid = "dev-%d" % i
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ else:
+ for lang in self.supported_languages:
+ lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"dev-{lang}-{i}"
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ examples_by_lang = {}
+ for lang in self.supported_languages:
+ examples_by_lang[lang] = []
+ lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"test-{lang}-{i}"
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = "0"
+ examples_by_lang[lang].append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ if self.translated_data_dir is not None:
+ for lang in self.supported_languages:
+ if lang == "en":
+ continue
+ examples_by_lang[f"{lang}-en"] = []
+ lines = self._read_tsv(
+ os.path.join(self.translated_data_dir, "translate-test",
+ f"test-{lang}-en-translated.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"test-{lang}-en-{i}"
+ text_a = self.process_text_fn(line[2])
+ text_b = self.process_text_fn(line[3])
+ label = "0"
+ examples_by_lang[f"{lang}-en"].append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples_by_lang
+
+ def get_labels(self):
+ """See base class."""
+ return ["0", "1"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "XTREME-PAWS-X"
+
+
+class XtremeXnliProcessor(DataProcessor):
+ """Processor for the XTREME XNLI data set."""
+ supported_languages = [
+ "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
+ "ur", "vi", "zh"
+ ]
+
+ def __init__(self,
+ process_text_fn=tokenization.convert_to_unicode,
+ translated_data_dir=None,
+ only_use_en_dev=True):
+ """See base class.
+
+ Args:
+ process_text_fn: See base class.
+ translated_data_dir: If specified, will also include translated data in
+ the training data.
+ only_use_en_dev: If True, only use english dev data. Otherwise, use dev
+ data from all languages.
+ """
+ super(XtremeXnliProcessor, self).__init__(process_text_fn)
+ self.translated_data_dir = translated_data_dir
+ self.only_use_en_dev = only_use_en_dev
+
+ def get_train_examples(self, data_dir):
+ """See base class."""
+ lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
+
+ examples = []
+ if self.translated_data_dir is None:
+ for i, line in enumerate(lines):
+ guid = "train-%d" % i
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ if label == self.process_text_fn("contradictory"):
+ label = self.process_text_fn("contradiction")
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ else:
+ for lang in self.supported_languages:
+ lines = self._read_tsv(
+ os.path.join(self.translated_data_dir, "translate-train",
+ f"en-{lang}-translated.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"train-{lang}-{i}"
+ text_a = self.process_text_fn(line[2])
+ text_b = self.process_text_fn(line[3])
+ label = self.process_text_fn(line[4])
+ if label == self.process_text_fn("contradictory"):
+ label = self.process_text_fn("contradiction")
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_dev_examples(self, data_dir):
+ """See base class."""
+ examples = []
+ if self.only_use_en_dev:
+ lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
+ for i, line in enumerate(lines):
+ guid = "dev-%d" % i
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ else:
+ for lang in self.supported_languages:
+ lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"dev-{lang}-{i}"
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = self.process_text_fn(line[2])
+ if label == self.process_text_fn("contradictory"):
+ label = self.process_text_fn("contradiction")
+ examples.append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ examples_by_lang = {}
+ for lang in self.supported_languages:
+ examples_by_lang[lang] = []
+ lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"test-{lang}-{i}"
+ text_a = self.process_text_fn(line[0])
+ text_b = self.process_text_fn(line[1])
+ label = "contradiction"
+ examples_by_lang[lang].append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ if self.translated_data_dir is not None:
+ for lang in self.supported_languages:
+ if lang == "en":
+ continue
+ examples_by_lang[f"{lang}-en"] = []
+ lines = self._read_tsv(
+ os.path.join(self.translated_data_dir, "translate-test",
+ f"test-{lang}-en-translated.tsv"))
+ for i, line in enumerate(lines):
+ guid = f"test-{lang}-en-{i}"
+ text_a = self.process_text_fn(line[2])
+ text_b = self.process_text_fn(line[3])
+ label = "contradiction"
+ examples_by_lang[f"{lang}-en"].append(
+ InputExample(
+ guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples_by_lang
+
+ def get_labels(self):
+ """See base class."""
+ return ["contradiction", "entailment", "neutral"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "XTREME-XNLI"
+
+
+def convert_single_example(ex_index, example, label_list, max_seq_length,
+ tokenizer):
+ """Converts a single `InputExample` into a single `InputFeatures`."""
+ label_map = {}
+ if label_list:
+ for (i, label) in enumerate(label_list):
+ label_map[label] = i
+
+ tokens_a = tokenizer.tokenize(example.text_a)
+ tokens_b = None
+ if example.text_b:
+ tokens_b = tokenizer.tokenize(example.text_b)
+
+ if tokens_b:
+ # Modifies `tokens_a` and `tokens_b` in place so that the total
+ # length is less than the specified length.
+ # Account for [CLS], [SEP], [SEP] with "- 3"
+ _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
+ else:
+ # Account for [CLS] and [SEP] with "- 2"
+ if len(tokens_a) > max_seq_length - 2:
+ tokens_a = tokens_a[0:(max_seq_length - 2)]
+
+ seg_id_a = 0
+ seg_id_b = 1
+ seg_id_cls = 0
+ seg_id_pad = 0
+
+ # The convention in BERT is:
+ # (a) For sequence pairs:
+ # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
+ # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
+ # (b) For single sequences:
+ # tokens: [CLS] the dog is hairy . [SEP]
+ # type_ids: 0 0 0 0 0 0 0
+ #
+ # Where "type_ids" are used to indicate whether this is the first
+ # sequence or the second sequence. The embedding vectors for `type=0` and
+ # `type=1` were learned during pre-training and are added to the wordpiece
+ # embedding vector (and position vector). This is not *strictly* necessary
+ # since the [SEP] token unambiguously separates the sequences, but it makes
+ # it easier for the model to learn the concept of sequences.
+ #
+ # For classification tasks, the first vector (corresponding to [CLS]) is
+ # used as the "sentence vector". Note that this only makes sense because
+ # the entire model is fine-tuned.
+ tokens = []
+ segment_ids = []
+ tokens.append("[CLS]")
+ segment_ids.append(seg_id_cls)
+ for token in tokens_a:
+ tokens.append(token)
+ segment_ids.append(seg_id_a)
+ tokens.append("[SEP]")
+ segment_ids.append(seg_id_a)
+
+ if tokens_b:
+ for token in tokens_b:
+ tokens.append(token)
+ segment_ids.append(seg_id_b)
+ tokens.append("[SEP]")
+ segment_ids.append(seg_id_b)
+
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
+
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
+ # tokens are attended to.
+ input_mask = [1] * len(input_ids)
+
+ # Zero-pad up to the sequence length.
+ while len(input_ids) < max_seq_length:
+ input_ids.append(0)
+ input_mask.append(0)
+ segment_ids.append(seg_id_pad)
+
+ assert len(input_ids) == max_seq_length
+ assert len(input_mask) == max_seq_length
+ assert len(segment_ids) == max_seq_length
+
+ label_id = label_map[example.label] if label_map else example.label
+ if ex_index < 5:
+ logging.info("*** Example ***")
+ logging.info("guid: %s", (example.guid))
+ logging.info("tokens: %s",
+ " ".join([tokenization.printable_text(x) for x in tokens]))
+ logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
+ logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
+ logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
+ logging.info("label: %s (id = %s)", example.label, str(label_id))
+ logging.info("weight: %s", example.weight)
+ logging.info("example_id: %s", example.example_id)
+
+ feature = InputFeatures(
+ input_ids=input_ids,
+ input_mask=input_mask,
+ segment_ids=segment_ids,
+ label_id=label_id,
+ is_real_example=True,
+ weight=example.weight,
+ example_id=example.example_id)
+
+ return feature
+
+
+class AXgProcessor(DataProcessor):
+ """Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
+
+ def get_test_examples(self, data_dir):
+ """See base class."""
+ return self._create_examples(
+ self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
+
+ def get_labels(self):
+ """See base class."""
+ return ["entailment", "not_entailment"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "AXg"
+
+ def _create_examples(self, lines, set_type):
+ """Creates examples for the training/dev/test sets."""
+ examples = []
+ for line in lines:
+ guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
+ text_a = self.process_text_fn(line["premise"])
+ text_b = self.process_text_fn(line["hypothesis"])
+ label = self.process_text_fn(line["label"])
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+
+class BoolQProcessor(DefaultGLUEDataProcessor):
+ """Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["True", "False"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "BoolQ"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "super_glue/boolq", split=set_type, try_gcs=True).as_numpy_iterator()
+ examples = []
+ for example in dataset:
+ guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
+ text_a = self.process_text_fn(example["question"])
+ text_b = self.process_text_fn(example["passage"])
+ label = "False"
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+
+class CBProcessor(DefaultGLUEDataProcessor):
+ """Processor for the CB dataset (SuperGLUE diagnostics dataset)."""
+
+ def get_labels(self):
+ """See base class."""
+ return ["entailment", "neutral", "contradiction"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "CB"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ dataset = tfds.load(
+ "super_glue/cb", split=set_type, try_gcs=True).as_numpy_iterator()
+ examples = []
+ for example in dataset:
+ guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
+ text_a = self.process_text_fn(example["premise"])
+ text_b = self.process_text_fn(example["hypothesis"])
+ label = "entailment"
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+
+class SuperGLUERTEProcessor(DefaultGLUEDataProcessor):
+ """Processor for the RTE dataset (SuperGLUE version)."""
+
+ def get_labels(self):
+ """See base class."""
+ # All datasets are converted to 2-class split, where for 3-class datasets we
+ # collapse neutral and contradiction into not_entailment.
+ return ["entailment", "not_entailment"]
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "RTESuperGLUE"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ examples = []
+ dataset = tfds.load(
+ "super_glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
+ for example in dataset:
+ guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
+ text_a = self.process_text_fn(example["premise"])
+ text_b = self.process_text_fn(example["hypothesis"])
+ label = "entailment"
+ if set_type != "test":
+ label = self.get_labels()[example["label"]]
+ examples.append(
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
+ return examples
+
+
+class WiCInputExample(InputExample):
+ """Processor for the WiC dataset (SuperGLUE version)."""
+
+ def __init__(self,
+ guid,
+ text_a,
+ text_b=None,
+ label=None,
+ word=None,
+ weight=None,
+ example_id=None):
+ """A single training/test example for simple seq regression/classification."""
+ super(WiCInputExample, self).__init__(guid, text_a, text_b, label, weight,
+ example_id)
+ self.word = word
+
+
+class WiCProcessor(DefaultGLUEDataProcessor):
+ """Processor for the RTE dataset (SuperGLUE version)."""
+
+ def get_labels(self):
+ """Not used."""
+ return []
+
+ @staticmethod
+ def get_processor_name():
+ """See base class."""
+ return "RTESuperGLUE"
+
+ def _create_examples_tfds(self, set_type):
+ """Creates examples for the training/dev/test sets."""
+ examples = []
+ dataset = tfds.load(
+ "super_glue/wic", split=set_type, try_gcs=True).as_numpy_iterator()
+ for example in dataset:
+ guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
+ text_a = self.process_text_fn(example["sentence1"])
+ text_b = self.process_text_fn(example["sentence2"])
+ word = self.process_text_fn(example["word"])
+ label = 0
+ if set_type != "test":
+ label = example["label"]
+ examples.append(
+ WiCInputExample(
+ guid=guid, text_a=text_a, text_b=text_b, word=word, label=label))
+ return examples
+
+ def featurize_example(self, ex_index, example, label_list, max_seq_length,
+ tokenizer):
+ """Here we concate sentence1, sentence2, word together with [SEP] tokens."""
+ del label_list
+ tokens_a = tokenizer.tokenize(example.text_a)
+ tokens_b = tokenizer.tokenize(example.text_b)
+ tokens_word = tokenizer.tokenize(example.word)
+
+ # Modifies `tokens_a` and `tokens_b` in place so that the total
+ # length is less than the specified length.
+ # Account for [CLS], [SEP], [SEP], [SEP] with "- 4"
+ # Here we only pop out the first two sentence tokens.
+ _truncate_seq_pair(tokens_a, tokens_b,
+ max_seq_length - 4 - len(tokens_word))
+
+ seg_id_a = 0
+ seg_id_b = 1
+ seg_id_c = 2
+ seg_id_cls = 0
+ seg_id_pad = 0
+
+ tokens = []
+ segment_ids = []
+ tokens.append("[CLS]")
+ segment_ids.append(seg_id_cls)
+ for token in tokens_a:
+ tokens.append(token)
+ segment_ids.append(seg_id_a)
+ tokens.append("[SEP]")
+ segment_ids.append(seg_id_a)
+
+ for token in tokens_b:
+ tokens.append(token)
+ segment_ids.append(seg_id_b)
+
+ tokens.append("[SEP]")
+ segment_ids.append(seg_id_b)
+
+ for token in tokens_word:
+ tokens.append(token)
+ segment_ids.append(seg_id_c)
+
+ tokens.append("[SEP]")
+ segment_ids.append(seg_id_c)
+
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
+
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
+ # tokens are attended to.
+ input_mask = [1] * len(input_ids)
+
+ # Zero-pad up to the sequence length.
+ while len(input_ids) < max_seq_length:
+ input_ids.append(0)
+ input_mask.append(0)
+ segment_ids.append(seg_id_pad)
+
+ assert len(input_ids) == max_seq_length
+ assert len(input_mask) == max_seq_length
+ assert len(segment_ids) == max_seq_length
+
+ label_id = example.label
+ if ex_index < 5:
+ logging.info("*** Example ***")
+ logging.info("guid: %s", (example.guid))
+ logging.info("tokens: %s",
+ " ".join([tokenization.printable_text(x) for x in tokens]))
+ logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
+ logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
+ logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
+ logging.info("label: %s (id = %s)", example.label, str(label_id))
+ logging.info("weight: %s", example.weight)
+ logging.info("example_id: %s", example.example_id)
+
+ feature = InputFeatures(
+ input_ids=input_ids,
+ input_mask=input_mask,
+ segment_ids=segment_ids,
+ label_id=label_id,
+ is_real_example=True,
+ weight=example.weight,
+ example_id=example.example_id)
+
+ return feature
+
+
+def file_based_convert_examples_to_features(examples,
+ label_list,
+ max_seq_length,
+ tokenizer,
+ output_file,
+ label_type=None,
+ featurize_fn=None):
+ """Convert a set of `InputExample`s to a TFRecord file."""
+
+ tf.io.gfile.makedirs(os.path.dirname(output_file))
+ writer = tf.io.TFRecordWriter(output_file)
+
+ for ex_index, example in enumerate(examples):
+ if ex_index % 10000 == 0:
+ logging.info("Writing example %d of %d", ex_index, len(examples))
+
+ if featurize_fn:
+ feature = featurize_fn(ex_index, example, label_list, max_seq_length,
+ tokenizer)
+ else:
+ feature = convert_single_example(ex_index, example, label_list,
+ max_seq_length, tokenizer)
+
+ def create_int_feature(values):
+ f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
+ return f
+
+ def create_float_feature(values):
+ f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
+ return f
+
+ features = collections.OrderedDict()
+ features["input_ids"] = create_int_feature(feature.input_ids)
+ features["input_mask"] = create_int_feature(feature.input_mask)
+ features["segment_ids"] = create_int_feature(feature.segment_ids)
+ if label_type is not None and label_type == float:
+ features["label_ids"] = create_float_feature([feature.label_id])
+ elif feature.label_id is not None:
+ features["label_ids"] = create_int_feature([feature.label_id])
+ features["is_real_example"] = create_int_feature(
+ [int(feature.is_real_example)])
+ if feature.weight is not None:
+ features["weight"] = create_float_feature([feature.weight])
+ if feature.example_id is not None:
+ features["example_id"] = create_int_feature([feature.example_id])
+ else:
+ features["example_id"] = create_int_feature([ex_index])
+
+ tf_example = tf.train.Example(features=tf.train.Features(feature=features))
+ writer.write(tf_example.SerializeToString())
+ writer.close()
+
+
+def _truncate_seq_pair(tokens_a, tokens_b, max_length):
+ """Truncates a sequence pair in place to the maximum length."""
+
+ # This is a simple heuristic which will always truncate the longer sequence
+ # one token at a time. This makes more sense than truncating an equal percent
+ # of tokens from each, since if one sequence is very short then each token
+ # that's truncated likely contains more information than a longer sequence.
+ while True:
+ total_length = len(tokens_a) + len(tokens_b)
+ if total_length <= max_length:
+ break
+ if len(tokens_a) > len(tokens_b):
+ tokens_a.pop()
+ else:
+ tokens_b.pop()
+
+
+def generate_tf_record_from_data_file(processor,
+ data_dir,
+ tokenizer,
+ train_data_output_path=None,
+ eval_data_output_path=None,
+ test_data_output_path=None,
+ max_seq_length=128):
+ """Generates and saves training data into a tf record file.
+
+ Args:
+ processor: Input processor object to be used for generating data. Subclass
+ of `DataProcessor`.
+ data_dir: Directory that contains train/eval/test data to process.
+ tokenizer: The tokenizer to be applied on the data.
+ train_data_output_path: Output to which processed tf record for training
+ will be saved.
+ eval_data_output_path: Output to which processed tf record for evaluation
+ will be saved.
+ test_data_output_path: Output to which processed tf record for testing
+ will be saved. Must be a pattern template with {} if processor has
+ language specific test data.
+ max_seq_length: Maximum sequence length of the to be generated
+ training/eval data.
+
+ Returns:
+ A dictionary containing input meta data.
+ """
+ assert train_data_output_path or eval_data_output_path
+
+ label_list = processor.get_labels()
+ label_type = getattr(processor, "label_type", None)
+ is_regression = getattr(processor, "is_regression", False)
+ has_sample_weights = getattr(processor, "weight_key", False)
+
+ num_training_data = 0
+ if train_data_output_path:
+ train_input_data_examples = processor.get_train_examples(data_dir)
+ file_based_convert_examples_to_features(train_input_data_examples,
+ label_list, max_seq_length,
+ tokenizer, train_data_output_path,
+ label_type,
+ processor.featurize_example)
+ num_training_data = len(train_input_data_examples)
+
+ if eval_data_output_path:
+ eval_input_data_examples = processor.get_dev_examples(data_dir)
+ file_based_convert_examples_to_features(eval_input_data_examples,
+ label_list, max_seq_length,
+ tokenizer, eval_data_output_path,
+ label_type,
+ processor.featurize_example)
+
+ meta_data = {
+ "processor_type": processor.get_processor_name(),
+ "train_data_size": num_training_data,
+ "max_seq_length": max_seq_length,
+ }
+
+ if test_data_output_path:
+ test_input_data_examples = processor.get_test_examples(data_dir)
+ if isinstance(test_input_data_examples, dict):
+ for language, examples in test_input_data_examples.items():
+ file_based_convert_examples_to_features(
+ examples, label_list, max_seq_length, tokenizer,
+ test_data_output_path.format(language), label_type,
+ processor.featurize_example)
+ meta_data["test_{}_data_size".format(language)] = len(examples)
+ else:
+ file_based_convert_examples_to_features(test_input_data_examples,
+ label_list, max_seq_length,
+ tokenizer, test_data_output_path,
+ label_type,
+ processor.featurize_example)
+ meta_data["test_data_size"] = len(test_input_data_examples)
+
+ if is_regression:
+ meta_data["task_type"] = "bert_regression"
+ meta_data["label_type"] = {int: "int", float: "float"}[label_type]
+ else:
+ meta_data["task_type"] = "bert_classification"
+ meta_data["num_labels"] = len(processor.get_labels())
+ if has_sample_weights:
+ meta_data["has_sample_weights"] = True
+
+ if eval_data_output_path:
+ meta_data["eval_data_size"] = len(eval_input_data_examples)
+
+ return meta_data