Pradeep Kumar commited on
Commit
7a97586
·
verified ·
1 Parent(s): 4905638

Delete pretrain_dynamic_dataloader_test.py

Browse files
Files changed (1) hide show
  1. pretrain_dynamic_dataloader_test.py +0 -245
pretrain_dynamic_dataloader_test.py DELETED
@@ -1,245 +0,0 @@
1
- # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- """Tests for nlp.data.pretrain_dynamic_dataloader."""
16
- import os
17
-
18
- from absl import logging
19
- from absl.testing import parameterized
20
- import numpy as np
21
- import orbit
22
- import tensorflow as tf, tf_keras
23
-
24
- from tensorflow.python.distribute import combinations
25
- from tensorflow.python.distribute import strategy_combinations
26
- from official.nlp.configs import bert
27
- from official.nlp.configs import encoders
28
- from official.nlp.data import pretrain_dataloader
29
- from official.nlp.data import pretrain_dynamic_dataloader
30
- from official.nlp.tasks import masked_lm
31
-
32
-
33
- def _create_fake_dataset(output_path, seq_length, num_masked_tokens,
34
- max_seq_length, num_examples):
35
- """Creates a fake dataset."""
36
- writer = tf.io.TFRecordWriter(output_path)
37
-
38
- def create_int_feature(values):
39
- f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
40
- return f
41
-
42
- def create_float_feature(values):
43
- f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
44
- return f
45
-
46
- rng = np.random.default_rng(37)
47
- for _ in range(num_examples):
48
- features = {}
49
- padding = np.zeros(shape=(max_seq_length - seq_length), dtype=np.int32)
50
- input_ids = rng.integers(low=1, high=100, size=(seq_length))
51
- features['input_ids'] = create_int_feature(
52
- np.concatenate((input_ids, padding)))
53
- features['input_mask'] = create_int_feature(
54
- np.concatenate((np.ones_like(input_ids), padding)))
55
- features['segment_ids'] = create_int_feature(
56
- np.concatenate((np.ones_like(input_ids), padding)))
57
- features['position_ids'] = create_int_feature(
58
- np.concatenate((np.ones_like(input_ids), padding)))
59
- features['masked_lm_positions'] = create_int_feature(
60
- rng.integers(60, size=(num_masked_tokens), dtype=np.int64))
61
- features['masked_lm_ids'] = create_int_feature(
62
- rng.integers(100, size=(num_masked_tokens), dtype=np.int64))
63
- features['masked_lm_weights'] = create_float_feature(
64
- np.ones((num_masked_tokens,), dtype=np.float32))
65
- features['next_sentence_labels'] = create_int_feature(np.array([0]))
66
-
67
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
68
- writer.write(tf_example.SerializeToString())
69
- writer.close()
70
-
71
-
72
- class PretrainDynamicDataLoaderTest(tf.test.TestCase, parameterized.TestCase):
73
-
74
- @combinations.generate(
75
- combinations.combine(
76
- distribution_strategy=[
77
- strategy_combinations.cloud_tpu_strategy,
78
- ],
79
- mode='eager'))
80
- def test_distribution_strategy(self, distribution_strategy):
81
- max_seq_length = 128
82
- batch_size = 8
83
- input_path = os.path.join(self.get_temp_dir(), 'train.tf_record')
84
- _create_fake_dataset(
85
- input_path,
86
- seq_length=60,
87
- num_masked_tokens=20,
88
- max_seq_length=max_seq_length,
89
- num_examples=batch_size)
90
- data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
91
- is_training=False,
92
- input_path=input_path,
93
- seq_bucket_lengths=[64, 128],
94
- global_batch_size=batch_size)
95
- dataloader = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
96
- data_config)
97
- distributed_ds = orbit.utils.make_distributed_dataset(
98
- distribution_strategy, dataloader.load)
99
- train_iter = iter(distributed_ds)
100
- with distribution_strategy.scope():
101
- config = masked_lm.MaskedLMConfig(
102
- init_checkpoint=self.get_temp_dir(),
103
- model=bert.PretrainerConfig(
104
- encoders.EncoderConfig(
105
- bert=encoders.BertEncoderConfig(
106
- vocab_size=30522, num_layers=1)),
107
- cls_heads=[
108
- bert.ClsHeadConfig(
109
- inner_dim=10, num_classes=2, name='next_sentence')
110
- ]),
111
- train_data=data_config)
112
- task = masked_lm.MaskedLMTask(config)
113
- model = task.build_model()
114
- metrics = task.build_metrics()
115
-
116
- @tf.function
117
- def step_fn(features):
118
- return task.validation_step(features, model, metrics=metrics)
119
-
120
- distributed_outputs = distribution_strategy.run(
121
- step_fn, args=(next(train_iter),))
122
- local_results = tf.nest.map_structure(
123
- distribution_strategy.experimental_local_results, distributed_outputs)
124
- logging.info('Dynamic padding: local_results= %s', str(local_results))
125
- dynamic_metrics = {}
126
- for metric in metrics:
127
- dynamic_metrics[metric.name] = metric.result()
128
-
129
- data_config = pretrain_dataloader.BertPretrainDataConfig(
130
- is_training=False,
131
- input_path=input_path,
132
- seq_length=max_seq_length,
133
- max_predictions_per_seq=20,
134
- global_batch_size=batch_size)
135
- dataloader = pretrain_dataloader.BertPretrainDataLoader(data_config)
136
- distributed_ds = orbit.utils.make_distributed_dataset(
137
- distribution_strategy, dataloader.load)
138
- train_iter = iter(distributed_ds)
139
- with distribution_strategy.scope():
140
- metrics = task.build_metrics()
141
-
142
- @tf.function
143
- def step_fn_b(features):
144
- return task.validation_step(features, model, metrics=metrics)
145
-
146
- distributed_outputs = distribution_strategy.run(
147
- step_fn_b, args=(next(train_iter),))
148
- local_results = tf.nest.map_structure(
149
- distribution_strategy.experimental_local_results, distributed_outputs)
150
- logging.info('Static padding: local_results= %s', str(local_results))
151
- static_metrics = {}
152
- for metric in metrics:
153
- static_metrics[metric.name] = metric.result()
154
- for key in static_metrics:
155
- # We need to investigate the differences on losses.
156
- if key != 'next_sentence_loss':
157
- self.assertEqual(dynamic_metrics[key], static_metrics[key])
158
-
159
- def test_load_dataset(self):
160
- tf.random.set_seed(0)
161
- max_seq_length = 128
162
- batch_size = 2
163
- input_path_1 = os.path.join(self.get_temp_dir(), 'train_1.tf_record')
164
- _create_fake_dataset(
165
- input_path_1,
166
- seq_length=60,
167
- num_masked_tokens=20,
168
- max_seq_length=max_seq_length,
169
- num_examples=batch_size)
170
- input_path_2 = os.path.join(self.get_temp_dir(), 'train_2.tf_record')
171
- _create_fake_dataset(
172
- input_path_2,
173
- seq_length=100,
174
- num_masked_tokens=70,
175
- max_seq_length=max_seq_length,
176
- num_examples=batch_size)
177
- input_paths = ','.join([input_path_1, input_path_2])
178
- data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
179
- is_training=False,
180
- input_path=input_paths,
181
- seq_bucket_lengths=[64, 128],
182
- use_position_id=True,
183
- global_batch_size=batch_size,
184
- deterministic=True)
185
- dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
186
- data_config).load()
187
- dataset_it = iter(dataset)
188
- features = next(dataset_it)
189
- self.assertCountEqual([
190
- 'input_word_ids',
191
- 'input_mask',
192
- 'input_type_ids',
193
- 'next_sentence_labels',
194
- 'masked_lm_positions',
195
- 'masked_lm_ids',
196
- 'masked_lm_weights',
197
- 'position_ids',
198
- ], features.keys())
199
- # Sequence length dimension should be bucketized and pad to 64.
200
- self.assertEqual(features['input_word_ids'].shape, (batch_size, 64))
201
- self.assertEqual(features['input_mask'].shape, (batch_size, 64))
202
- self.assertEqual(features['input_type_ids'].shape, (batch_size, 64))
203
- self.assertEqual(features['position_ids'].shape, (batch_size, 64))
204
- self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 20))
205
- features = next(dataset_it)
206
- self.assertEqual(features['input_word_ids'].shape, (batch_size, 128))
207
- self.assertEqual(features['input_mask'].shape, (batch_size, 128))
208
- self.assertEqual(features['input_type_ids'].shape, (batch_size, 128))
209
- self.assertEqual(features['position_ids'].shape, (batch_size, 128))
210
- self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 70))
211
-
212
- def test_load_dataset_not_same_masks(self):
213
- max_seq_length = 128
214
- batch_size = 2
215
- input_path_1 = os.path.join(self.get_temp_dir(), 'train_3.tf_record')
216
- _create_fake_dataset(
217
- input_path_1,
218
- seq_length=60,
219
- num_masked_tokens=20,
220
- max_seq_length=max_seq_length,
221
- num_examples=batch_size)
222
- input_path_2 = os.path.join(self.get_temp_dir(), 'train_4.tf_record')
223
- _create_fake_dataset(
224
- input_path_2,
225
- seq_length=60,
226
- num_masked_tokens=15,
227
- max_seq_length=max_seq_length,
228
- num_examples=batch_size)
229
- input_paths = ','.join([input_path_1, input_path_2])
230
- data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig(
231
- is_training=False,
232
- input_path=input_paths,
233
- seq_bucket_lengths=[64, 128],
234
- use_position_id=True,
235
- global_batch_size=batch_size * 2)
236
- dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader(
237
- data_config).load()
238
- dataset_it = iter(dataset)
239
- with self.assertRaisesRegex(
240
- tf.errors.InvalidArgumentError, '.*Number of non padded mask tokens.*'):
241
- next(dataset_it)
242
-
243
-
244
- if __name__ == '__main__':
245
- tf.test.main()