Pradeep Kumar commited on
Commit
8fd53d8
·
verified ·
1 Parent(s): f1c6409

Delete tagging_dataloader_test.py

Browse files
Files changed (1) hide show
  1. tagging_dataloader_test.py +0 -82
tagging_dataloader_test.py DELETED
@@ -1,82 +0,0 @@
1
- # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- """Tests for official.nlp.data.tagging_data_loader."""
16
- import os
17
-
18
- from absl.testing import parameterized
19
- import numpy as np
20
- import tensorflow as tf, tf_keras
21
-
22
- from official.nlp.data import tagging_dataloader
23
-
24
-
25
- def _create_fake_dataset(output_path, seq_length, include_sentence_id):
26
- """Creates a fake dataset."""
27
- writer = tf.io.TFRecordWriter(output_path)
28
-
29
- def create_int_feature(values):
30
- f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
31
- return f
32
-
33
- for i in range(100):
34
- features = {}
35
- input_ids = np.random.randint(100, size=(seq_length))
36
- features['input_ids'] = create_int_feature(input_ids)
37
- features['input_mask'] = create_int_feature(np.ones_like(input_ids))
38
- features['segment_ids'] = create_int_feature(np.ones_like(input_ids))
39
- features['label_ids'] = create_int_feature(
40
- np.random.randint(10, size=(seq_length)))
41
- if include_sentence_id:
42
- features['sentence_id'] = create_int_feature([i])
43
- features['sub_sentence_id'] = create_int_feature([0])
44
-
45
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
46
- writer.write(tf_example.SerializeToString())
47
- writer.close()
48
-
49
-
50
- class TaggingDataLoaderTest(tf.test.TestCase, parameterized.TestCase):
51
-
52
- @parameterized.parameters(True, False)
53
- def test_load_dataset(self, include_sentence_id):
54
- seq_length = 16
55
- batch_size = 10
56
- train_data_path = os.path.join(self.get_temp_dir(), 'train.tf_record')
57
- _create_fake_dataset(train_data_path, seq_length, include_sentence_id)
58
- data_config = tagging_dataloader.TaggingDataConfig(
59
- input_path=train_data_path,
60
- seq_length=seq_length,
61
- global_batch_size=batch_size,
62
- include_sentence_id=include_sentence_id)
63
-
64
- dataset = tagging_dataloader.TaggingDataLoader(data_config).load()
65
- features, labels = next(iter(dataset))
66
-
67
- expected_keys = ['input_word_ids', 'input_mask', 'input_type_ids']
68
- if include_sentence_id:
69
- expected_keys.extend(['sentence_id', 'sub_sentence_id'])
70
- self.assertCountEqual(expected_keys, features.keys())
71
-
72
- self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length))
73
- self.assertEqual(features['input_mask'].shape, (batch_size, seq_length))
74
- self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length))
75
- self.assertEqual(labels.shape, (batch_size, seq_length))
76
- if include_sentence_id:
77
- self.assertEqual(features['sentence_id'].shape, (batch_size,))
78
- self.assertEqual(features['sub_sentence_id'].shape, (batch_size,))
79
-
80
-
81
- if __name__ == '__main__':
82
- tf.test.main()