Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete tf2_albert_encoder_checkpoint_converter.py
Browse files
tf2_albert_encoder_checkpoint_converter.py
DELETED
@@ -1,170 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""A converter from a tf1 ALBERT encoder checkpoint to a tf2 encoder checkpoint.
|
16 |
-
|
17 |
-
The conversion will yield an object-oriented checkpoint that can be used
|
18 |
-
to restore an AlbertEncoder object.
|
19 |
-
"""
|
20 |
-
import os
|
21 |
-
|
22 |
-
from absl import app
|
23 |
-
from absl import flags
|
24 |
-
|
25 |
-
import tensorflow as tf, tf_keras
|
26 |
-
from official.legacy.albert import configs
|
27 |
-
from official.modeling import tf_utils
|
28 |
-
from official.nlp.modeling import models
|
29 |
-
from official.nlp.modeling import networks
|
30 |
-
from official.nlp.tools import tf1_bert_checkpoint_converter_lib
|
31 |
-
|
32 |
-
FLAGS = flags.FLAGS
|
33 |
-
|
34 |
-
flags.DEFINE_string("albert_config_file", None,
|
35 |
-
"Albert configuration file to define core bert layers.")
|
36 |
-
flags.DEFINE_string(
|
37 |
-
"checkpoint_to_convert", None,
|
38 |
-
"Initial checkpoint from a pretrained BERT model core (that is, only the "
|
39 |
-
"BertModel, with no task heads.)")
|
40 |
-
flags.DEFINE_string("converted_checkpoint_path", None,
|
41 |
-
"Name for the created object-based V2 checkpoint.")
|
42 |
-
flags.DEFINE_string("checkpoint_model_name", "encoder",
|
43 |
-
"The name of the model when saving the checkpoint, i.e., "
|
44 |
-
"the checkpoint will be saved using: "
|
45 |
-
"tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).")
|
46 |
-
flags.DEFINE_enum(
|
47 |
-
"converted_model", "encoder", ["encoder", "pretrainer"],
|
48 |
-
"Whether to convert the checkpoint to a `AlbertEncoder` model or a "
|
49 |
-
"`BertPretrainerV2` model (with mlm but without classification heads).")
|
50 |
-
|
51 |
-
|
52 |
-
ALBERT_NAME_REPLACEMENTS = (
|
53 |
-
("bert/encoder/", ""),
|
54 |
-
("bert/", ""),
|
55 |
-
("embeddings/word_embeddings", "word_embeddings/embeddings"),
|
56 |
-
("embeddings/position_embeddings", "position_embedding/embeddings"),
|
57 |
-
("embeddings/token_type_embeddings", "type_embeddings/embeddings"),
|
58 |
-
("embeddings/LayerNorm", "embeddings/layer_norm"),
|
59 |
-
("embedding_hidden_mapping_in", "embedding_projection"),
|
60 |
-
("group_0/inner_group_0/", ""),
|
61 |
-
("attention_1/self", "self_attention"),
|
62 |
-
("attention_1/output/dense", "self_attention/attention_output"),
|
63 |
-
("transformer/LayerNorm/", "transformer/self_attention_layer_norm/"),
|
64 |
-
("ffn_1/intermediate/dense", "intermediate"),
|
65 |
-
("ffn_1/intermediate/output/dense", "output"),
|
66 |
-
("transformer/LayerNorm_1/", "transformer/output_layer_norm/"),
|
67 |
-
("pooler/dense", "pooler_transform"),
|
68 |
-
("cls/predictions", "bert/cls/predictions"),
|
69 |
-
("cls/predictions/output_bias", "cls/predictions/output_bias/bias"),
|
70 |
-
("cls/seq_relationship/output_bias", "predictions/transform/logits/bias"),
|
71 |
-
("cls/seq_relationship/output_weights",
|
72 |
-
"predictions/transform/logits/kernel"),
|
73 |
-
)
|
74 |
-
|
75 |
-
|
76 |
-
def _create_albert_model(cfg):
|
77 |
-
"""Creates an ALBERT keras core model from BERT configuration.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
cfg: A `AlbertConfig` to create the core model.
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
A keras model.
|
84 |
-
"""
|
85 |
-
albert_encoder = networks.AlbertEncoder(
|
86 |
-
vocab_size=cfg.vocab_size,
|
87 |
-
hidden_size=cfg.hidden_size,
|
88 |
-
embedding_width=cfg.embedding_size,
|
89 |
-
num_layers=cfg.num_hidden_layers,
|
90 |
-
num_attention_heads=cfg.num_attention_heads,
|
91 |
-
intermediate_size=cfg.intermediate_size,
|
92 |
-
activation=tf_utils.get_activation(cfg.hidden_act),
|
93 |
-
dropout_rate=cfg.hidden_dropout_prob,
|
94 |
-
attention_dropout_rate=cfg.attention_probs_dropout_prob,
|
95 |
-
max_sequence_length=cfg.max_position_embeddings,
|
96 |
-
type_vocab_size=cfg.type_vocab_size,
|
97 |
-
initializer=tf_keras.initializers.TruncatedNormal(
|
98 |
-
stddev=cfg.initializer_range))
|
99 |
-
return albert_encoder
|
100 |
-
|
101 |
-
|
102 |
-
def _create_pretrainer_model(cfg):
|
103 |
-
"""Creates a pretrainer with AlbertEncoder from ALBERT configuration.
|
104 |
-
|
105 |
-
Args:
|
106 |
-
cfg: A `BertConfig` to create the core model.
|
107 |
-
|
108 |
-
Returns:
|
109 |
-
A BertPretrainerV2 model.
|
110 |
-
"""
|
111 |
-
albert_encoder = _create_albert_model(cfg)
|
112 |
-
pretrainer = models.BertPretrainerV2(
|
113 |
-
encoder_network=albert_encoder,
|
114 |
-
mlm_activation=tf_utils.get_activation(cfg.hidden_act),
|
115 |
-
mlm_initializer=tf_keras.initializers.TruncatedNormal(
|
116 |
-
stddev=cfg.initializer_range))
|
117 |
-
# Makes sure masked_lm layer's variables in pretrainer are created.
|
118 |
-
_ = pretrainer(pretrainer.inputs)
|
119 |
-
return pretrainer
|
120 |
-
|
121 |
-
|
122 |
-
def convert_checkpoint(bert_config, output_path, v1_checkpoint,
|
123 |
-
checkpoint_model_name,
|
124 |
-
converted_model="encoder"):
|
125 |
-
"""Converts a V1 checkpoint into an OO V2 checkpoint."""
|
126 |
-
output_dir, _ = os.path.split(output_path)
|
127 |
-
|
128 |
-
# Create a temporary V1 name-converted checkpoint in the output directory.
|
129 |
-
temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1")
|
130 |
-
temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt")
|
131 |
-
tf1_bert_checkpoint_converter_lib.convert(
|
132 |
-
checkpoint_from_path=v1_checkpoint,
|
133 |
-
checkpoint_to_path=temporary_checkpoint,
|
134 |
-
num_heads=bert_config.num_attention_heads,
|
135 |
-
name_replacements=ALBERT_NAME_REPLACEMENTS,
|
136 |
-
permutations=tf1_bert_checkpoint_converter_lib.BERT_V2_PERMUTATIONS,
|
137 |
-
exclude_patterns=["adam", "Adam"])
|
138 |
-
|
139 |
-
# Create a V2 checkpoint from the temporary checkpoint.
|
140 |
-
if converted_model == "encoder":
|
141 |
-
model = _create_albert_model(bert_config)
|
142 |
-
elif converted_model == "pretrainer":
|
143 |
-
model = _create_pretrainer_model(bert_config)
|
144 |
-
else:
|
145 |
-
raise ValueError("Unsupported converted_model: %s" % converted_model)
|
146 |
-
|
147 |
-
tf1_bert_checkpoint_converter_lib.create_v2_checkpoint(
|
148 |
-
model, temporary_checkpoint, output_path, checkpoint_model_name)
|
149 |
-
|
150 |
-
# Clean up the temporary checkpoint, if it exists.
|
151 |
-
try:
|
152 |
-
tf.io.gfile.rmtree(temporary_checkpoint_dir)
|
153 |
-
except tf.errors.OpError:
|
154 |
-
# If it doesn't exist, we don't need to clean it up; continue.
|
155 |
-
pass
|
156 |
-
|
157 |
-
|
158 |
-
def main(_):
|
159 |
-
output_path = FLAGS.converted_checkpoint_path
|
160 |
-
v1_checkpoint = FLAGS.checkpoint_to_convert
|
161 |
-
checkpoint_model_name = FLAGS.checkpoint_model_name
|
162 |
-
converted_model = FLAGS.converted_model
|
163 |
-
albert_config = configs.AlbertConfig.from_json_file(FLAGS.albert_config_file)
|
164 |
-
convert_checkpoint(albert_config, output_path, v1_checkpoint,
|
165 |
-
checkpoint_model_name,
|
166 |
-
converted_model=converted_model)
|
167 |
-
|
168 |
-
|
169 |
-
if __name__ == "__main__":
|
170 |
-
app.run(main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|