Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete question_answering_dataloader.py
Browse files- question_answering_dataloader.py +0 -115
question_answering_dataloader.py
DELETED
@@ -1,115 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Loads dataset for the question answering (e.g, SQuAD) task."""
|
16 |
-
import dataclasses
|
17 |
-
from typing import Mapping, Optional
|
18 |
-
|
19 |
-
import tensorflow as tf, tf_keras
|
20 |
-
from official.common import dataset_fn
|
21 |
-
from official.core import config_definitions as cfg
|
22 |
-
from official.core import input_reader
|
23 |
-
from official.nlp.data import data_loader
|
24 |
-
from official.nlp.data import data_loader_factory
|
25 |
-
|
26 |
-
|
27 |
-
@dataclasses.dataclass
|
28 |
-
class QADataConfig(cfg.DataConfig):
|
29 |
-
"""Data config for question answering task (tasks/question_answering)."""
|
30 |
-
# For training, `input_path` is expected to be a pre-processed TFRecord file,
|
31 |
-
# while for evaluation, it is expected to be a raw JSON file (b/173814590).
|
32 |
-
input_path: str = ''
|
33 |
-
global_batch_size: int = 48
|
34 |
-
is_training: bool = True
|
35 |
-
seq_length: int = 384
|
36 |
-
# Settings below are question answering specific.
|
37 |
-
version_2_with_negative: bool = False
|
38 |
-
# Settings below are only used for eval mode.
|
39 |
-
input_preprocessed_data_path: str = ''
|
40 |
-
doc_stride: int = 128
|
41 |
-
query_length: int = 64
|
42 |
-
# The path to the vocab file of word piece tokenizer or the
|
43 |
-
# model of the sentence piece tokenizer.
|
44 |
-
vocab_file: str = ''
|
45 |
-
tokenization: str = 'WordPiece' # WordPiece or SentencePiece
|
46 |
-
do_lower_case: bool = True
|
47 |
-
xlnet_format: bool = False
|
48 |
-
file_type: str = 'tfrecord'
|
49 |
-
|
50 |
-
|
51 |
-
@data_loader_factory.register_data_loader_cls(QADataConfig)
|
52 |
-
class QuestionAnsweringDataLoader(data_loader.DataLoader):
|
53 |
-
"""A class to load dataset for sentence prediction (classification) task."""
|
54 |
-
|
55 |
-
def __init__(self, params):
|
56 |
-
self._params = params
|
57 |
-
self._seq_length = params.seq_length
|
58 |
-
self._is_training = params.is_training
|
59 |
-
self._xlnet_format = params.xlnet_format
|
60 |
-
|
61 |
-
def _decode(self, record: tf.Tensor):
|
62 |
-
"""Decodes a serialized tf.Example."""
|
63 |
-
name_to_features = {
|
64 |
-
'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
|
65 |
-
'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64),
|
66 |
-
'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
|
67 |
-
}
|
68 |
-
if self._xlnet_format:
|
69 |
-
name_to_features['class_index'] = tf.io.FixedLenFeature([], tf.int64)
|
70 |
-
name_to_features['paragraph_mask'] = tf.io.FixedLenFeature(
|
71 |
-
[self._seq_length], tf.int64)
|
72 |
-
if self._is_training:
|
73 |
-
name_to_features['is_impossible'] = tf.io.FixedLenFeature([], tf.int64)
|
74 |
-
|
75 |
-
if self._is_training:
|
76 |
-
name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
|
77 |
-
name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
|
78 |
-
else:
|
79 |
-
name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
|
80 |
-
example = tf.io.parse_single_example(record, name_to_features)
|
81 |
-
|
82 |
-
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
|
83 |
-
# So cast all int64 to int32.
|
84 |
-
for name in example:
|
85 |
-
t = example[name]
|
86 |
-
if t.dtype == tf.int64:
|
87 |
-
t = tf.cast(t, tf.int32)
|
88 |
-
example[name] = t
|
89 |
-
|
90 |
-
return example
|
91 |
-
|
92 |
-
def _parse(self, record: Mapping[str, tf.Tensor]):
|
93 |
-
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
|
94 |
-
x, y = {}, {}
|
95 |
-
for name, tensor in record.items():
|
96 |
-
if name in ('start_positions', 'end_positions', 'is_impossible'):
|
97 |
-
y[name] = tensor
|
98 |
-
elif name == 'input_ids':
|
99 |
-
x['input_word_ids'] = tensor
|
100 |
-
elif name == 'segment_ids':
|
101 |
-
x['input_type_ids'] = tensor
|
102 |
-
else:
|
103 |
-
x[name] = tensor
|
104 |
-
if name == 'start_positions' and self._xlnet_format:
|
105 |
-
x[name] = tensor
|
106 |
-
return (x, y)
|
107 |
-
|
108 |
-
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
|
109 |
-
"""Returns a tf.dataset.Dataset."""
|
110 |
-
reader = input_reader.InputReader(
|
111 |
-
params=self._params,
|
112 |
-
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
|
113 |
-
decoder_fn=self._decode,
|
114 |
-
parser_fn=self._parse)
|
115 |
-
return reader.read(input_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|