Spaces:
Running
Running
Pradeep Kumar
commited on
Delete pretrain_dataloader_test.py
Browse files- pretrain_dataloader_test.py +0 -242
pretrain_dataloader_test.py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Tests for official.nlp.data.pretrain_dataloader."""
|
16 |
-
import itertools
|
17 |
-
import os
|
18 |
-
|
19 |
-
from absl.testing import parameterized
|
20 |
-
import numpy as np
|
21 |
-
import tensorflow as tf, tf_keras
|
22 |
-
|
23 |
-
from official.nlp.data import pretrain_dataloader
|
24 |
-
|
25 |
-
|
26 |
-
def create_int_feature(values):
|
27 |
-
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
|
28 |
-
return f
|
29 |
-
|
30 |
-
|
31 |
-
def _create_fake_bert_dataset(
|
32 |
-
output_path,
|
33 |
-
seq_length,
|
34 |
-
max_predictions_per_seq,
|
35 |
-
use_position_id,
|
36 |
-
use_next_sentence_label,
|
37 |
-
use_v2_feature_names=False):
|
38 |
-
"""Creates a fake dataset."""
|
39 |
-
writer = tf.io.TFRecordWriter(output_path)
|
40 |
-
|
41 |
-
def create_float_feature(values):
|
42 |
-
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
|
43 |
-
return f
|
44 |
-
|
45 |
-
for _ in range(100):
|
46 |
-
features = {}
|
47 |
-
input_ids = np.random.randint(100, size=(seq_length))
|
48 |
-
features["input_mask"] = create_int_feature(np.ones_like(input_ids))
|
49 |
-
if use_v2_feature_names:
|
50 |
-
features["input_word_ids"] = create_int_feature(input_ids)
|
51 |
-
features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
|
52 |
-
else:
|
53 |
-
features["input_ids"] = create_int_feature(input_ids)
|
54 |
-
features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
|
55 |
-
|
56 |
-
features["masked_lm_positions"] = create_int_feature(
|
57 |
-
np.random.randint(100, size=(max_predictions_per_seq)))
|
58 |
-
features["masked_lm_ids"] = create_int_feature(
|
59 |
-
np.random.randint(100, size=(max_predictions_per_seq)))
|
60 |
-
features["masked_lm_weights"] = create_float_feature(
|
61 |
-
[1.0] * max_predictions_per_seq)
|
62 |
-
|
63 |
-
if use_next_sentence_label:
|
64 |
-
features["next_sentence_labels"] = create_int_feature([1])
|
65 |
-
|
66 |
-
if use_position_id:
|
67 |
-
features["position_ids"] = create_int_feature(range(0, seq_length))
|
68 |
-
|
69 |
-
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
|
70 |
-
writer.write(tf_example.SerializeToString())
|
71 |
-
writer.close()
|
72 |
-
|
73 |
-
|
74 |
-
def _create_fake_xlnet_dataset(
|
75 |
-
output_path, seq_length, max_predictions_per_seq):
|
76 |
-
"""Creates a fake dataset."""
|
77 |
-
writer = tf.io.TFRecordWriter(output_path)
|
78 |
-
for _ in range(100):
|
79 |
-
features = {}
|
80 |
-
input_ids = np.random.randint(100, size=(seq_length))
|
81 |
-
num_boundary_indices = np.random.randint(1, seq_length)
|
82 |
-
|
83 |
-
if max_predictions_per_seq is not None:
|
84 |
-
input_mask = np.zeros_like(input_ids)
|
85 |
-
input_mask[:max_predictions_per_seq] = 1
|
86 |
-
np.random.shuffle(input_mask)
|
87 |
-
else:
|
88 |
-
input_mask = np.ones_like(input_ids)
|
89 |
-
|
90 |
-
features["input_mask"] = create_int_feature(input_mask)
|
91 |
-
features["input_word_ids"] = create_int_feature(input_ids)
|
92 |
-
features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
|
93 |
-
features["boundary_indices"] = create_int_feature(
|
94 |
-
sorted(np.random.randint(seq_length, size=(num_boundary_indices))))
|
95 |
-
features["target"] = create_int_feature(input_ids + 1)
|
96 |
-
features["label"] = create_int_feature([1])
|
97 |
-
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
|
98 |
-
writer.write(tf_example.SerializeToString())
|
99 |
-
writer.close()
|
100 |
-
|
101 |
-
|
102 |
-
class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):
|
103 |
-
|
104 |
-
@parameterized.parameters(itertools.product(
|
105 |
-
(False, True),
|
106 |
-
(False, True),
|
107 |
-
))
|
108 |
-
def test_load_data(self, use_next_sentence_label, use_position_id):
|
109 |
-
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
|
110 |
-
seq_length = 128
|
111 |
-
max_predictions_per_seq = 20
|
112 |
-
_create_fake_bert_dataset(
|
113 |
-
train_data_path,
|
114 |
-
seq_length,
|
115 |
-
max_predictions_per_seq,
|
116 |
-
use_next_sentence_label=use_next_sentence_label,
|
117 |
-
use_position_id=use_position_id)
|
118 |
-
data_config = pretrain_dataloader.BertPretrainDataConfig(
|
119 |
-
input_path=train_data_path,
|
120 |
-
max_predictions_per_seq=max_predictions_per_seq,
|
121 |
-
seq_length=seq_length,
|
122 |
-
global_batch_size=10,
|
123 |
-
is_training=True,
|
124 |
-
use_next_sentence_label=use_next_sentence_label,
|
125 |
-
use_position_id=use_position_id)
|
126 |
-
|
127 |
-
dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
|
128 |
-
features = next(iter(dataset))
|
129 |
-
self.assertLen(features,
|
130 |
-
6 + int(use_next_sentence_label) + int(use_position_id))
|
131 |
-
self.assertIn("input_word_ids", features)
|
132 |
-
self.assertIn("input_mask", features)
|
133 |
-
self.assertIn("input_type_ids", features)
|
134 |
-
self.assertIn("masked_lm_positions", features)
|
135 |
-
self.assertIn("masked_lm_ids", features)
|
136 |
-
self.assertIn("masked_lm_weights", features)
|
137 |
-
|
138 |
-
self.assertEqual("next_sentence_labels" in features,
|
139 |
-
use_next_sentence_label)
|
140 |
-
self.assertEqual("position_ids" in features, use_position_id)
|
141 |
-
|
142 |
-
def test_v2_feature_names(self):
|
143 |
-
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
|
144 |
-
seq_length = 128
|
145 |
-
max_predictions_per_seq = 20
|
146 |
-
_create_fake_bert_dataset(
|
147 |
-
train_data_path,
|
148 |
-
seq_length,
|
149 |
-
max_predictions_per_seq,
|
150 |
-
use_next_sentence_label=True,
|
151 |
-
use_position_id=False,
|
152 |
-
use_v2_feature_names=True)
|
153 |
-
data_config = pretrain_dataloader.BertPretrainDataConfig(
|
154 |
-
input_path=train_data_path,
|
155 |
-
max_predictions_per_seq=max_predictions_per_seq,
|
156 |
-
seq_length=seq_length,
|
157 |
-
global_batch_size=10,
|
158 |
-
is_training=True,
|
159 |
-
use_next_sentence_label=True,
|
160 |
-
use_position_id=False,
|
161 |
-
use_v2_feature_names=True)
|
162 |
-
|
163 |
-
dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
|
164 |
-
features = next(iter(dataset))
|
165 |
-
self.assertIn("input_word_ids", features)
|
166 |
-
self.assertIn("input_mask", features)
|
167 |
-
self.assertIn("input_type_ids", features)
|
168 |
-
self.assertIn("masked_lm_positions", features)
|
169 |
-
self.assertIn("masked_lm_ids", features)
|
170 |
-
self.assertIn("masked_lm_weights", features)
|
171 |
-
|
172 |
-
|
173 |
-
class XLNetPretrainDataTest(parameterized.TestCase, tf.test.TestCase):
|
174 |
-
|
175 |
-
@parameterized.parameters(itertools.product(
|
176 |
-
("single_token", "whole_word", "token_span"),
|
177 |
-
(0, 64),
|
178 |
-
(20, None),
|
179 |
-
))
|
180 |
-
def test_load_data(
|
181 |
-
self, sample_strategy, reuse_length, max_predictions_per_seq):
|
182 |
-
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
|
183 |
-
seq_length = 128
|
184 |
-
batch_size = 5
|
185 |
-
|
186 |
-
_create_fake_xlnet_dataset(
|
187 |
-
train_data_path, seq_length, max_predictions_per_seq)
|
188 |
-
|
189 |
-
data_config = pretrain_dataloader.XLNetPretrainDataConfig(
|
190 |
-
input_path=train_data_path,
|
191 |
-
max_predictions_per_seq=max_predictions_per_seq,
|
192 |
-
seq_length=seq_length,
|
193 |
-
global_batch_size=batch_size,
|
194 |
-
is_training=True,
|
195 |
-
reuse_length=reuse_length,
|
196 |
-
sample_strategy=sample_strategy,
|
197 |
-
min_num_tokens=1,
|
198 |
-
max_num_tokens=2,
|
199 |
-
permutation_size=seq_length // 2,
|
200 |
-
leak_ratio=0.1)
|
201 |
-
|
202 |
-
if max_predictions_per_seq is None:
|
203 |
-
with self.assertRaises(ValueError):
|
204 |
-
dataset = pretrain_dataloader.XLNetPretrainDataLoader(
|
205 |
-
data_config).load()
|
206 |
-
features = next(iter(dataset))
|
207 |
-
else:
|
208 |
-
dataset = pretrain_dataloader.XLNetPretrainDataLoader(data_config).load()
|
209 |
-
features = next(iter(dataset))
|
210 |
-
|
211 |
-
self.assertIn("input_word_ids", features)
|
212 |
-
self.assertIn("input_type_ids", features)
|
213 |
-
self.assertIn("permutation_mask", features)
|
214 |
-
self.assertIn("masked_tokens", features)
|
215 |
-
self.assertIn("target", features)
|
216 |
-
self.assertIn("target_mask", features)
|
217 |
-
|
218 |
-
self.assertAllClose(features["input_word_ids"].shape,
|
219 |
-
(batch_size, seq_length))
|
220 |
-
self.assertAllClose(features["input_type_ids"].shape,
|
221 |
-
(batch_size, seq_length))
|
222 |
-
self.assertAllClose(features["permutation_mask"].shape,
|
223 |
-
(batch_size, seq_length, seq_length))
|
224 |
-
self.assertAllClose(features["masked_tokens"].shape,
|
225 |
-
(batch_size, seq_length,))
|
226 |
-
if max_predictions_per_seq is not None:
|
227 |
-
self.assertIn("target_mapping", features)
|
228 |
-
self.assertAllClose(features["target_mapping"].shape,
|
229 |
-
(batch_size, max_predictions_per_seq, seq_length))
|
230 |
-
self.assertAllClose(features["target_mask"].shape,
|
231 |
-
(batch_size, max_predictions_per_seq))
|
232 |
-
self.assertAllClose(features["target"].shape,
|
233 |
-
(batch_size, max_predictions_per_seq))
|
234 |
-
else:
|
235 |
-
self.assertAllClose(features["target_mask"].shape,
|
236 |
-
(batch_size, seq_length))
|
237 |
-
self.assertAllClose(features["target"].shape,
|
238 |
-
(batch_size, seq_length))
|
239 |
-
|
240 |
-
|
241 |
-
if __name__ == "__main__":
|
242 |
-
tf.test.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|