Pradeep Kumar commited on
Commit
ee402bd
·
verified ·
1 Parent(s): e0aefa8

Delete pretrain_dataloader_test.py

Browse files
Files changed (1) hide show
  1. pretrain_dataloader_test.py +0 -242
pretrain_dataloader_test.py DELETED
@@ -1,242 +0,0 @@
1
- # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- """Tests for official.nlp.data.pretrain_dataloader."""
16
- import itertools
17
- import os
18
-
19
- from absl.testing import parameterized
20
- import numpy as np
21
- import tensorflow as tf, tf_keras
22
-
23
- from official.nlp.data import pretrain_dataloader
24
-
25
-
26
- def create_int_feature(values):
27
- f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
28
- return f
29
-
30
-
31
- def _create_fake_bert_dataset(
32
- output_path,
33
- seq_length,
34
- max_predictions_per_seq,
35
- use_position_id,
36
- use_next_sentence_label,
37
- use_v2_feature_names=False):
38
- """Creates a fake dataset."""
39
- writer = tf.io.TFRecordWriter(output_path)
40
-
41
- def create_float_feature(values):
42
- f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
43
- return f
44
-
45
- for _ in range(100):
46
- features = {}
47
- input_ids = np.random.randint(100, size=(seq_length))
48
- features["input_mask"] = create_int_feature(np.ones_like(input_ids))
49
- if use_v2_feature_names:
50
- features["input_word_ids"] = create_int_feature(input_ids)
51
- features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
52
- else:
53
- features["input_ids"] = create_int_feature(input_ids)
54
- features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
55
-
56
- features["masked_lm_positions"] = create_int_feature(
57
- np.random.randint(100, size=(max_predictions_per_seq)))
58
- features["masked_lm_ids"] = create_int_feature(
59
- np.random.randint(100, size=(max_predictions_per_seq)))
60
- features["masked_lm_weights"] = create_float_feature(
61
- [1.0] * max_predictions_per_seq)
62
-
63
- if use_next_sentence_label:
64
- features["next_sentence_labels"] = create_int_feature([1])
65
-
66
- if use_position_id:
67
- features["position_ids"] = create_int_feature(range(0, seq_length))
68
-
69
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
70
- writer.write(tf_example.SerializeToString())
71
- writer.close()
72
-
73
-
74
- def _create_fake_xlnet_dataset(
75
- output_path, seq_length, max_predictions_per_seq):
76
- """Creates a fake dataset."""
77
- writer = tf.io.TFRecordWriter(output_path)
78
- for _ in range(100):
79
- features = {}
80
- input_ids = np.random.randint(100, size=(seq_length))
81
- num_boundary_indices = np.random.randint(1, seq_length)
82
-
83
- if max_predictions_per_seq is not None:
84
- input_mask = np.zeros_like(input_ids)
85
- input_mask[:max_predictions_per_seq] = 1
86
- np.random.shuffle(input_mask)
87
- else:
88
- input_mask = np.ones_like(input_ids)
89
-
90
- features["input_mask"] = create_int_feature(input_mask)
91
- features["input_word_ids"] = create_int_feature(input_ids)
92
- features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
93
- features["boundary_indices"] = create_int_feature(
94
- sorted(np.random.randint(seq_length, size=(num_boundary_indices))))
95
- features["target"] = create_int_feature(input_ids + 1)
96
- features["label"] = create_int_feature([1])
97
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
98
- writer.write(tf_example.SerializeToString())
99
- writer.close()
100
-
101
-
102
- class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):
103
-
104
- @parameterized.parameters(itertools.product(
105
- (False, True),
106
- (False, True),
107
- ))
108
- def test_load_data(self, use_next_sentence_label, use_position_id):
109
- train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
110
- seq_length = 128
111
- max_predictions_per_seq = 20
112
- _create_fake_bert_dataset(
113
- train_data_path,
114
- seq_length,
115
- max_predictions_per_seq,
116
- use_next_sentence_label=use_next_sentence_label,
117
- use_position_id=use_position_id)
118
- data_config = pretrain_dataloader.BertPretrainDataConfig(
119
- input_path=train_data_path,
120
- max_predictions_per_seq=max_predictions_per_seq,
121
- seq_length=seq_length,
122
- global_batch_size=10,
123
- is_training=True,
124
- use_next_sentence_label=use_next_sentence_label,
125
- use_position_id=use_position_id)
126
-
127
- dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
128
- features = next(iter(dataset))
129
- self.assertLen(features,
130
- 6 + int(use_next_sentence_label) + int(use_position_id))
131
- self.assertIn("input_word_ids", features)
132
- self.assertIn("input_mask", features)
133
- self.assertIn("input_type_ids", features)
134
- self.assertIn("masked_lm_positions", features)
135
- self.assertIn("masked_lm_ids", features)
136
- self.assertIn("masked_lm_weights", features)
137
-
138
- self.assertEqual("next_sentence_labels" in features,
139
- use_next_sentence_label)
140
- self.assertEqual("position_ids" in features, use_position_id)
141
-
142
- def test_v2_feature_names(self):
143
- train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
144
- seq_length = 128
145
- max_predictions_per_seq = 20
146
- _create_fake_bert_dataset(
147
- train_data_path,
148
- seq_length,
149
- max_predictions_per_seq,
150
- use_next_sentence_label=True,
151
- use_position_id=False,
152
- use_v2_feature_names=True)
153
- data_config = pretrain_dataloader.BertPretrainDataConfig(
154
- input_path=train_data_path,
155
- max_predictions_per_seq=max_predictions_per_seq,
156
- seq_length=seq_length,
157
- global_batch_size=10,
158
- is_training=True,
159
- use_next_sentence_label=True,
160
- use_position_id=False,
161
- use_v2_feature_names=True)
162
-
163
- dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
164
- features = next(iter(dataset))
165
- self.assertIn("input_word_ids", features)
166
- self.assertIn("input_mask", features)
167
- self.assertIn("input_type_ids", features)
168
- self.assertIn("masked_lm_positions", features)
169
- self.assertIn("masked_lm_ids", features)
170
- self.assertIn("masked_lm_weights", features)
171
-
172
-
173
- class XLNetPretrainDataTest(parameterized.TestCase, tf.test.TestCase):
174
-
175
- @parameterized.parameters(itertools.product(
176
- ("single_token", "whole_word", "token_span"),
177
- (0, 64),
178
- (20, None),
179
- ))
180
- def test_load_data(
181
- self, sample_strategy, reuse_length, max_predictions_per_seq):
182
- train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
183
- seq_length = 128
184
- batch_size = 5
185
-
186
- _create_fake_xlnet_dataset(
187
- train_data_path, seq_length, max_predictions_per_seq)
188
-
189
- data_config = pretrain_dataloader.XLNetPretrainDataConfig(
190
- input_path=train_data_path,
191
- max_predictions_per_seq=max_predictions_per_seq,
192
- seq_length=seq_length,
193
- global_batch_size=batch_size,
194
- is_training=True,
195
- reuse_length=reuse_length,
196
- sample_strategy=sample_strategy,
197
- min_num_tokens=1,
198
- max_num_tokens=2,
199
- permutation_size=seq_length // 2,
200
- leak_ratio=0.1)
201
-
202
- if max_predictions_per_seq is None:
203
- with self.assertRaises(ValueError):
204
- dataset = pretrain_dataloader.XLNetPretrainDataLoader(
205
- data_config).load()
206
- features = next(iter(dataset))
207
- else:
208
- dataset = pretrain_dataloader.XLNetPretrainDataLoader(data_config).load()
209
- features = next(iter(dataset))
210
-
211
- self.assertIn("input_word_ids", features)
212
- self.assertIn("input_type_ids", features)
213
- self.assertIn("permutation_mask", features)
214
- self.assertIn("masked_tokens", features)
215
- self.assertIn("target", features)
216
- self.assertIn("target_mask", features)
217
-
218
- self.assertAllClose(features["input_word_ids"].shape,
219
- (batch_size, seq_length))
220
- self.assertAllClose(features["input_type_ids"].shape,
221
- (batch_size, seq_length))
222
- self.assertAllClose(features["permutation_mask"].shape,
223
- (batch_size, seq_length, seq_length))
224
- self.assertAllClose(features["masked_tokens"].shape,
225
- (batch_size, seq_length,))
226
- if max_predictions_per_seq is not None:
227
- self.assertIn("target_mapping", features)
228
- self.assertAllClose(features["target_mapping"].shape,
229
- (batch_size, max_predictions_per_seq, seq_length))
230
- self.assertAllClose(features["target_mask"].shape,
231
- (batch_size, max_predictions_per_seq))
232
- self.assertAllClose(features["target"].shape,
233
- (batch_size, max_predictions_per_seq))
234
- else:
235
- self.assertAllClose(features["target_mask"].shape,
236
- (batch_size, seq_length))
237
- self.assertAllClose(features["target"].shape,
238
- (batch_size, seq_length))
239
-
240
-
241
- if __name__ == "__main__":
242
- tf.test.main()