Spaces:
Sleeping
Sleeping
Pradeep Kumar
commited on
Delete wmt_dataloader.py
Browse files- wmt_dataloader.py +0 -295
wmt_dataloader.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Input pipeline for the transformer model to read, filter, and batch examples.
|
16 |
-
|
17 |
-
Batching scheme
|
18 |
-
|
19 |
-
Prior to batching, elements in the dataset are grouped by length (max between
|
20 |
-
'inputs' and 'targets' length). Each group is then batched such that:
|
21 |
-
group_batch_size * length <= batch_size.
|
22 |
-
|
23 |
-
Another way to view batch_size is the maximum number of tokens in each batch.
|
24 |
-
|
25 |
-
Once batched, each element in the dataset will have the shape:
|
26 |
-
{'inputs': [group_batch_size, padded_input_length],
|
27 |
-
'targets': [group_batch_size, padded_target_length]}
|
28 |
-
Lengths are padded to the longest 'inputs' or 'targets' sequence in the batch
|
29 |
-
(padded_input_length and padded_target_length can be different).
|
30 |
-
|
31 |
-
This batching scheme decreases the fraction of padding tokens per training
|
32 |
-
batch, thus improving the training speed significantly.
|
33 |
-
"""
|
34 |
-
from typing import Dict, Optional
|
35 |
-
|
36 |
-
import dataclasses
|
37 |
-
import tensorflow as tf, tf_keras
|
38 |
-
import tensorflow_text as tftxt
|
39 |
-
from official.core import config_definitions as cfg
|
40 |
-
from official.core import input_reader
|
41 |
-
from official.nlp.data import data_loader
|
42 |
-
from official.nlp.data import data_loader_factory
|
43 |
-
|
44 |
-
# Example grouping constants. Defines length boundaries for each group.
|
45 |
-
# These values are the defaults used in Tensor2Tensor.
|
46 |
-
_MIN_BOUNDARY = 8
|
47 |
-
_BOUNDARY_SCALE = 1.1
|
48 |
-
|
49 |
-
|
50 |
-
def _get_example_length(example):
|
51 |
-
"""Returns the maximum length between the example inputs and targets."""
|
52 |
-
length = tf.maximum(tf.shape(example[0])[0], tf.shape(example[1])[0])
|
53 |
-
return length
|
54 |
-
|
55 |
-
|
56 |
-
def _create_min_max_boundaries(max_length,
|
57 |
-
min_boundary=_MIN_BOUNDARY,
|
58 |
-
boundary_scale=_BOUNDARY_SCALE):
|
59 |
-
"""Create min and max boundary lists up to max_length.
|
60 |
-
|
61 |
-
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the
|
62 |
-
returned values will be:
|
63 |
-
buckets_min = [0, 4, 8, 16]
|
64 |
-
buckets_max = [4, 8, 16, 25]
|
65 |
-
|
66 |
-
Args:
|
67 |
-
max_length: The maximum length of example in dataset.
|
68 |
-
min_boundary: Minimum length in boundary.
|
69 |
-
boundary_scale: Amount to scale consecutive boundaries in the list.
|
70 |
-
|
71 |
-
Returns:
|
72 |
-
min and max boundary lists
|
73 |
-
|
74 |
-
"""
|
75 |
-
# Create bucket boundaries list by scaling the previous boundary or adding 1
|
76 |
-
# (to ensure increasing boundary sizes).
|
77 |
-
bucket_boundaries = []
|
78 |
-
x = min_boundary
|
79 |
-
while x < max_length:
|
80 |
-
bucket_boundaries.append(x)
|
81 |
-
x = max(x + 1, int(x * boundary_scale))
|
82 |
-
|
83 |
-
# Create min and max boundary lists from the initial list.
|
84 |
-
buckets_min = [0] + bucket_boundaries
|
85 |
-
buckets_max = bucket_boundaries + [max_length + 1]
|
86 |
-
return buckets_min, buckets_max
|
87 |
-
|
88 |
-
|
89 |
-
def _batch_examples(dataset, batch_size, max_length):
|
90 |
-
"""Group examples by similar lengths, and return batched dataset.
|
91 |
-
|
92 |
-
Each batch of similar-length examples are padded to the same length, and may
|
93 |
-
have different number of elements in each batch, such that:
|
94 |
-
group_batch_size * padded_length <= batch_size.
|
95 |
-
|
96 |
-
This decreases the number of padding tokens per batch, which improves the
|
97 |
-
training speed.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
dataset: Dataset of unbatched examples.
|
101 |
-
batch_size: Max number of tokens per batch of examples.
|
102 |
-
max_length: Max number of tokens in an example input or target sequence.
|
103 |
-
|
104 |
-
Returns:
|
105 |
-
Dataset of batched examples with similar lengths.
|
106 |
-
"""
|
107 |
-
# Get min and max boundary lists for each example. These are used to calculate
|
108 |
-
# the `bucket_id`, which is the index at which:
|
109 |
-
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id]
|
110 |
-
# Note that using both min and max lists improves the performance.
|
111 |
-
buckets_min, buckets_max = _create_min_max_boundaries(max_length)
|
112 |
-
|
113 |
-
# Create list of batch sizes for each bucket_id, so that
|
114 |
-
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size
|
115 |
-
bucket_batch_sizes = [int(batch_size) // x for x in buckets_max]
|
116 |
-
|
117 |
-
# Validates bucket batch sizes.
|
118 |
-
if any([batch_size <= 0 for batch_size in bucket_batch_sizes]):
|
119 |
-
raise ValueError(
|
120 |
-
'The token budget, global batch size, is too small to yield 0 bucket '
|
121 |
-
'window: %s' % str(bucket_batch_sizes))
|
122 |
-
|
123 |
-
# bucket_id will be a tensor, so convert this list to a tensor as well.
|
124 |
-
bucket_batch_sizes = tf.constant(bucket_batch_sizes, dtype=tf.int64)
|
125 |
-
|
126 |
-
def example_to_bucket_id(example):
|
127 |
-
"""Return int64 bucket id for this example, calculated based on length."""
|
128 |
-
example_input = example['inputs']
|
129 |
-
example_target = example['targets']
|
130 |
-
seq_length = _get_example_length((example_input, example_target))
|
131 |
-
|
132 |
-
conditions_c = tf.logical_and(
|
133 |
-
tf.less_equal(buckets_min, seq_length), tf.less(seq_length,
|
134 |
-
buckets_max))
|
135 |
-
bucket_id = tf.reduce_min(tf.where(conditions_c))
|
136 |
-
return bucket_id
|
137 |
-
|
138 |
-
def window_size_fn(bucket_id):
|
139 |
-
"""Return number of examples to be grouped when given a bucket id."""
|
140 |
-
return bucket_batch_sizes[bucket_id]
|
141 |
-
|
142 |
-
def batching_fn(bucket_id, grouped_dataset):
|
143 |
-
"""Batch and add padding to a dataset of elements with similar lengths."""
|
144 |
-
bucket_batch_size = window_size_fn(bucket_id)
|
145 |
-
|
146 |
-
# Batch the dataset and add padding so that all input sequences in the
|
147 |
-
# examples have the same length, and all target sequences have the same
|
148 |
-
# lengths as well. Resulting lengths of inputs and targets can differ.
|
149 |
-
padded_shapes = dict([
|
150 |
-
(name, [None] * len(spec.shape))
|
151 |
-
for name, spec in grouped_dataset.element_spec.items()
|
152 |
-
])
|
153 |
-
return grouped_dataset.padded_batch(bucket_batch_size, padded_shapes)
|
154 |
-
|
155 |
-
return dataset.apply(
|
156 |
-
tf.data.experimental.group_by_window(
|
157 |
-
key_func=example_to_bucket_id,
|
158 |
-
reduce_func=batching_fn,
|
159 |
-
window_size=None,
|
160 |
-
window_size_func=window_size_fn))
|
161 |
-
|
162 |
-
|
163 |
-
@dataclasses.dataclass
|
164 |
-
class WMTDataConfig(cfg.DataConfig):
|
165 |
-
"""Data config for WMT translation."""
|
166 |
-
max_seq_length: int = 64
|
167 |
-
static_batch: bool = False
|
168 |
-
sentencepiece_model_path: str = ''
|
169 |
-
src_lang: str = ''
|
170 |
-
tgt_lang: str = ''
|
171 |
-
transform_and_batch: bool = True
|
172 |
-
has_unique_id: bool = False
|
173 |
-
|
174 |
-
|
175 |
-
@data_loader_factory.register_data_loader_cls(WMTDataConfig)
|
176 |
-
class WMTDataLoader(data_loader.DataLoader):
|
177 |
-
"""A class to load dataset for WMT translation task."""
|
178 |
-
|
179 |
-
def __init__(self, params: WMTDataConfig):
|
180 |
-
self._params = params
|
181 |
-
self._max_seq_length = params.max_seq_length
|
182 |
-
self._static_batch = params.static_batch
|
183 |
-
self._global_batch_size = params.global_batch_size
|
184 |
-
if self._params.transform_and_batch:
|
185 |
-
self._tokenizer = tftxt.SentencepieceTokenizer(
|
186 |
-
model=tf.io.gfile.GFile(params.sentencepiece_model_path, 'rb').read(),
|
187 |
-
add_eos=True)
|
188 |
-
|
189 |
-
def _decode(self, record: tf.Tensor):
|
190 |
-
"""Decodes a serialized tf.Example."""
|
191 |
-
name_to_features = {
|
192 |
-
self._params.src_lang: tf.io.FixedLenFeature([], tf.string),
|
193 |
-
self._params.tgt_lang: tf.io.FixedLenFeature([], tf.string),
|
194 |
-
}
|
195 |
-
if self._params.has_unique_id:
|
196 |
-
name_to_features['unique_id'] = tf.io.FixedLenFeature([], tf.int64)
|
197 |
-
example = tf.io.parse_single_example(record, name_to_features)
|
198 |
-
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
|
199 |
-
# So cast all int64 to int32.
|
200 |
-
for name in example:
|
201 |
-
t = example[name]
|
202 |
-
if t.dtype == tf.int64:
|
203 |
-
t = tf.cast(t, tf.int32)
|
204 |
-
example[name] = t
|
205 |
-
return example
|
206 |
-
|
207 |
-
def _tokenize(self, inputs) -> Dict[str, tf.Tensor]:
|
208 |
-
tokenized_inputs = {}
|
209 |
-
for k, v in inputs.items():
|
210 |
-
if k == self._params.src_lang:
|
211 |
-
tokenized_inputs['inputs'] = self._tokenizer.tokenize(v)
|
212 |
-
elif k == self._params.tgt_lang:
|
213 |
-
tokenized_inputs['targets'] = self._tokenizer.tokenize(v)
|
214 |
-
else:
|
215 |
-
tokenized_inputs[k] = v
|
216 |
-
print(tokenized_inputs)
|
217 |
-
return tokenized_inputs
|
218 |
-
|
219 |
-
def _filter_max_length(self, inputs):
|
220 |
-
# return tf.constant(True)
|
221 |
-
return tf.logical_and(
|
222 |
-
tf.shape(inputs['inputs'])[0] <= self._max_seq_length,
|
223 |
-
tf.shape(inputs['targets'])[0] <= self._max_seq_length)
|
224 |
-
|
225 |
-
def _maybe_truncate(self, inputs):
|
226 |
-
truncated_inputs = {}
|
227 |
-
for k, v in inputs.items():
|
228 |
-
if k == 'inputs' or k == 'targets':
|
229 |
-
truncated_inputs[k] = tf.pad(
|
230 |
-
v[:self._max_seq_length - 1], [[0, 1]],
|
231 |
-
constant_values=1) if tf.shape(v)[0] > self._max_seq_length else v
|
232 |
-
else:
|
233 |
-
truncated_inputs[k] = v
|
234 |
-
return truncated_inputs
|
235 |
-
|
236 |
-
def _tokenize_bucketize_and_batch(
|
237 |
-
self,
|
238 |
-
dataset,
|
239 |
-
input_context: Optional[tf.distribute.InputContext] = None):
|
240 |
-
dataset = dataset.map(
|
241 |
-
self._tokenize, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
242 |
-
|
243 |
-
if self._params.is_training:
|
244 |
-
dataset = dataset.filter(self._filter_max_length)
|
245 |
-
else:
|
246 |
-
dataset = dataset.map(
|
247 |
-
self._maybe_truncate,
|
248 |
-
num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
249 |
-
|
250 |
-
per_replica_batch_size = input_context.get_per_replica_batch_size(
|
251 |
-
self._global_batch_size) if input_context else self._global_batch_size
|
252 |
-
if self._static_batch:
|
253 |
-
padded_shapes = {}
|
254 |
-
for name, _ in dataset.element_spec.items():
|
255 |
-
if name == 'unique_id':
|
256 |
-
padded_shapes[name] = []
|
257 |
-
else:
|
258 |
-
padded_shapes[name] = [self._max_seq_length
|
259 |
-
] if self._static_batch else [None]
|
260 |
-
batch_size = per_replica_batch_size
|
261 |
-
if self._params.is_training:
|
262 |
-
batch_size = int(batch_size // self._max_seq_length)
|
263 |
-
dataset = dataset.padded_batch(
|
264 |
-
batch_size,
|
265 |
-
padded_shapes,
|
266 |
-
drop_remainder=True)
|
267 |
-
else:
|
268 |
-
# Group and batch such that each batch has examples of similar length.
|
269 |
-
dataset = _batch_examples(dataset, per_replica_batch_size,
|
270 |
-
self._max_seq_length)
|
271 |
-
# Prefetch the next element to improve speed of input pipeline.
|
272 |
-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
|
273 |
-
return dataset
|
274 |
-
|
275 |
-
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
|
276 |
-
"""Returns a tf.dataset.Dataset."""
|
277 |
-
decoder_fn = None
|
278 |
-
# Only decode for TFRecords.
|
279 |
-
if self._params.input_path:
|
280 |
-
decoder_fn = self._decode
|
281 |
-
|
282 |
-
def _identity(
|
283 |
-
dataset, input_context: Optional[tf.distribute.InputContext] = None):
|
284 |
-
del input_context
|
285 |
-
return dataset
|
286 |
-
|
287 |
-
transform_and_batch_fn = _identity
|
288 |
-
if self._params.transform_and_batch:
|
289 |
-
transform_and_batch_fn = self._tokenize_bucketize_and_batch
|
290 |
-
|
291 |
-
reader = input_reader.InputReader(
|
292 |
-
params=self._params,
|
293 |
-
decoder_fn=decoder_fn,
|
294 |
-
transform_and_batch_fn=transform_and_batch_fn)
|
295 |
-
return reader.read(input_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|