Spaces:
Running
Running
Pradeep Kumar
commited on
Delete export_tfhub_lib_test.py
Browse files- export_tfhub_lib_test.py +0 -1080
export_tfhub_lib_test.py
DELETED
@@ -1,1080 +0,0 @@
|
|
1 |
-
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Tests export_tfhub_lib."""
|
16 |
-
|
17 |
-
import os
|
18 |
-
import tempfile
|
19 |
-
|
20 |
-
from absl.testing import parameterized
|
21 |
-
import numpy as np
|
22 |
-
import tensorflow as tf, tf_keras
|
23 |
-
from tensorflow import estimator as tf_estimator
|
24 |
-
import tensorflow_hub as hub
|
25 |
-
import tensorflow_text as text
|
26 |
-
|
27 |
-
from sentencepiece import SentencePieceTrainer
|
28 |
-
from official.legacy.bert import configs
|
29 |
-
from official.modeling import tf_utils
|
30 |
-
from official.nlp.configs import encoders
|
31 |
-
from official.nlp.modeling import layers
|
32 |
-
from official.nlp.modeling import models
|
33 |
-
from official.nlp.tools import export_tfhub_lib
|
34 |
-
|
35 |
-
|
36 |
-
def _get_bert_config_or_encoder_config(use_bert_config,
|
37 |
-
hidden_size,
|
38 |
-
num_hidden_layers,
|
39 |
-
encoder_type="albert",
|
40 |
-
vocab_size=100):
|
41 |
-
"""Generates config args for export_tfhub_lib._create_model().
|
42 |
-
|
43 |
-
Args:
|
44 |
-
use_bert_config: bool. If True, returns legacy BertConfig.
|
45 |
-
hidden_size: int.
|
46 |
-
num_hidden_layers: int.
|
47 |
-
encoder_type: str. Can be ['albert', 'bert', 'bert_v2']. If use_bert_config
|
48 |
-
== True, then model_type is not used.
|
49 |
-
vocab_size: int.
|
50 |
-
|
51 |
-
Returns:
|
52 |
-
bert_config, encoder_config. Only one is not None. If
|
53 |
-
`use_bert_config` == True, the first config is valid. Otherwise
|
54 |
-
`bert_config` == None.
|
55 |
-
"""
|
56 |
-
if use_bert_config:
|
57 |
-
bert_config = configs.BertConfig(
|
58 |
-
vocab_size=vocab_size,
|
59 |
-
hidden_size=hidden_size,
|
60 |
-
intermediate_size=32,
|
61 |
-
max_position_embeddings=128,
|
62 |
-
num_attention_heads=2,
|
63 |
-
num_hidden_layers=num_hidden_layers)
|
64 |
-
encoder_config = None
|
65 |
-
else:
|
66 |
-
bert_config = None
|
67 |
-
if encoder_type == "albert":
|
68 |
-
encoder_config = encoders.EncoderConfig(
|
69 |
-
type="albert",
|
70 |
-
albert=encoders.AlbertEncoderConfig(
|
71 |
-
vocab_size=vocab_size,
|
72 |
-
embedding_width=16,
|
73 |
-
hidden_size=hidden_size,
|
74 |
-
intermediate_size=32,
|
75 |
-
max_position_embeddings=128,
|
76 |
-
num_attention_heads=2,
|
77 |
-
num_layers=num_hidden_layers,
|
78 |
-
dropout_rate=0.1))
|
79 |
-
else:
|
80 |
-
# encoder_type can be 'bert' or 'bert_v2'.
|
81 |
-
model_config = encoders.BertEncoderConfig(
|
82 |
-
vocab_size=vocab_size,
|
83 |
-
embedding_size=16,
|
84 |
-
hidden_size=hidden_size,
|
85 |
-
intermediate_size=32,
|
86 |
-
max_position_embeddings=128,
|
87 |
-
num_attention_heads=2,
|
88 |
-
num_layers=num_hidden_layers,
|
89 |
-
dropout_rate=0.1)
|
90 |
-
kwargs = {"type": encoder_type, encoder_type: model_config}
|
91 |
-
encoder_config = encoders.EncoderConfig(**kwargs)
|
92 |
-
|
93 |
-
return bert_config, encoder_config
|
94 |
-
|
95 |
-
|
96 |
-
def _get_vocab_or_sp_model_dummy(temp_dir, use_sp_model):
|
97 |
-
"""Returns tokenizer asset args for export_tfhub_lib.export_model()."""
|
98 |
-
dummy_file = os.path.join(temp_dir, "dummy_file.txt")
|
99 |
-
with tf.io.gfile.GFile(dummy_file, "w") as f:
|
100 |
-
f.write("dummy content")
|
101 |
-
if use_sp_model:
|
102 |
-
vocab_file, sp_model_file = None, dummy_file
|
103 |
-
else:
|
104 |
-
vocab_file, sp_model_file = dummy_file, None
|
105 |
-
return vocab_file, sp_model_file
|
106 |
-
|
107 |
-
|
108 |
-
def _read_asset(asset: tf.saved_model.Asset):
|
109 |
-
return tf.io.gfile.GFile(asset.asset_path.numpy()).read()
|
110 |
-
|
111 |
-
|
112 |
-
def _find_lambda_layers(layer):
|
113 |
-
"""Returns list of all Lambda layers in a Keras model."""
|
114 |
-
if isinstance(layer, tf_keras.layers.Lambda):
|
115 |
-
return [layer]
|
116 |
-
elif hasattr(layer, "layers"): # It's nested, like a Model.
|
117 |
-
result = []
|
118 |
-
for l in layer.layers:
|
119 |
-
result += _find_lambda_layers(l)
|
120 |
-
return result
|
121 |
-
else:
|
122 |
-
return []
|
123 |
-
|
124 |
-
|
125 |
-
class ExportModelTest(tf.test.TestCase, parameterized.TestCase):
|
126 |
-
"""Tests exporting a Transformer Encoder model as a SavedModel.
|
127 |
-
|
128 |
-
This covers export from an Encoder checkpoint to a SavedModel without
|
129 |
-
the .mlm subobject. This is no longer preferred, but still useful
|
130 |
-
for models like Electra that are trained without the MLM task.
|
131 |
-
|
132 |
-
The export code is generic. This test focuses on two main cases
|
133 |
-
(the most important ones in practice when this was written in 2020):
|
134 |
-
- BERT built from a legacy BertConfig, for use with BertTokenizer.
|
135 |
-
- ALBERT built from an EncoderConfig (as a representative of all other
|
136 |
-
choices beyond BERT, for use with SentencepieceTokenizer (the one
|
137 |
-
alternative to BertTokenizer).
|
138 |
-
"""
|
139 |
-
|
140 |
-
@parameterized.named_parameters(
|
141 |
-
("Bert_Legacy", True, None), ("Albert", False, "albert"),
|
142 |
-
("BertEncoder", False, "bert"), ("BertEncoderV2", False, "bert_v2"))
|
143 |
-
def test_export_model(self, use_bert, encoder_type):
|
144 |
-
# Create the encoder and export it.
|
145 |
-
hidden_size = 16
|
146 |
-
num_hidden_layers = 1
|
147 |
-
bert_config, encoder_config = _get_bert_config_or_encoder_config(
|
148 |
-
use_bert,
|
149 |
-
hidden_size=hidden_size,
|
150 |
-
num_hidden_layers=num_hidden_layers,
|
151 |
-
encoder_type=encoder_type)
|
152 |
-
bert_model, encoder = export_tfhub_lib._create_model(
|
153 |
-
bert_config=bert_config, encoder_config=encoder_config, with_mlm=False)
|
154 |
-
self.assertEmpty(
|
155 |
-
_find_lambda_layers(bert_model),
|
156 |
-
"Lambda layers are non-portable since they serialize Python bytecode.")
|
157 |
-
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
|
158 |
-
checkpoint = tf.train.Checkpoint(encoder=encoder)
|
159 |
-
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
|
160 |
-
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
|
161 |
-
|
162 |
-
vocab_file, sp_model_file = _get_vocab_or_sp_model_dummy(
|
163 |
-
self.get_temp_dir(), use_sp_model=not use_bert)
|
164 |
-
export_path = os.path.join(self.get_temp_dir(), "hub")
|
165 |
-
export_tfhub_lib.export_model(
|
166 |
-
export_path=export_path,
|
167 |
-
bert_config=bert_config,
|
168 |
-
encoder_config=encoder_config,
|
169 |
-
model_checkpoint_path=model_checkpoint_path,
|
170 |
-
with_mlm=False,
|
171 |
-
vocab_file=vocab_file,
|
172 |
-
sp_model_file=sp_model_file,
|
173 |
-
do_lower_case=True)
|
174 |
-
|
175 |
-
# Restore the exported model.
|
176 |
-
hub_layer = hub.KerasLayer(export_path, trainable=True)
|
177 |
-
|
178 |
-
# Check legacy tokenization data.
|
179 |
-
if use_bert:
|
180 |
-
self.assertTrue(hub_layer.resolved_object.do_lower_case.numpy())
|
181 |
-
self.assertEqual("dummy content",
|
182 |
-
_read_asset(hub_layer.resolved_object.vocab_file))
|
183 |
-
self.assertFalse(hasattr(hub_layer.resolved_object, "sp_model_file"))
|
184 |
-
else:
|
185 |
-
self.assertFalse(hasattr(hub_layer.resolved_object, "do_lower_case"))
|
186 |
-
self.assertFalse(hasattr(hub_layer.resolved_object, "vocab_file"))
|
187 |
-
self.assertEqual("dummy content",
|
188 |
-
_read_asset(hub_layer.resolved_object.sp_model_file))
|
189 |
-
|
190 |
-
# Check restored weights.
|
191 |
-
self.assertEqual(
|
192 |
-
len(bert_model.trainable_weights), len(hub_layer.trainable_weights))
|
193 |
-
for source_weight, hub_weight in zip(bert_model.trainable_weights,
|
194 |
-
hub_layer.trainable_weights):
|
195 |
-
self.assertAllClose(source_weight.numpy(), hub_weight.numpy())
|
196 |
-
|
197 |
-
# Check computation.
|
198 |
-
seq_length = 10
|
199 |
-
dummy_ids = np.zeros((2, seq_length), dtype=np.int32)
|
200 |
-
input_dict = dict(
|
201 |
-
input_word_ids=dummy_ids,
|
202 |
-
input_mask=dummy_ids,
|
203 |
-
input_type_ids=dummy_ids)
|
204 |
-
hub_output = hub_layer(input_dict)
|
205 |
-
source_output = bert_model(input_dict)
|
206 |
-
encoder_output = encoder(input_dict)
|
207 |
-
self.assertEqual(hub_output["pooled_output"].shape, (2, hidden_size))
|
208 |
-
self.assertEqual(hub_output["sequence_output"].shape,
|
209 |
-
(2, seq_length, hidden_size))
|
210 |
-
self.assertLen(hub_output["encoder_outputs"], num_hidden_layers)
|
211 |
-
|
212 |
-
for key in ("pooled_output", "sequence_output", "encoder_outputs"):
|
213 |
-
self.assertAllClose(source_output[key], hub_output[key])
|
214 |
-
self.assertAllClose(source_output[key], encoder_output[key])
|
215 |
-
|
216 |
-
# The "default" output of BERT as a text representation is pooled_output.
|
217 |
-
self.assertAllClose(hub_output["pooled_output"], hub_output["default"])
|
218 |
-
|
219 |
-
# Test that training=True makes a difference (activates dropout).
|
220 |
-
def _dropout_mean_stddev(training, num_runs=20):
|
221 |
-
input_ids = np.array([[14, 12, 42, 95, 99]], np.int32)
|
222 |
-
input_dict = dict(
|
223 |
-
input_word_ids=input_ids,
|
224 |
-
input_mask=np.ones_like(input_ids),
|
225 |
-
input_type_ids=np.zeros_like(input_ids))
|
226 |
-
outputs = np.concatenate([
|
227 |
-
hub_layer(input_dict, training=training)["pooled_output"]
|
228 |
-
for _ in range(num_runs)
|
229 |
-
])
|
230 |
-
return np.mean(np.std(outputs, axis=0))
|
231 |
-
|
232 |
-
self.assertLess(_dropout_mean_stddev(training=False), 1e-6)
|
233 |
-
self.assertGreater(_dropout_mean_stddev(training=True), 1e-3)
|
234 |
-
|
235 |
-
# Test propagation of seq_length in shape inference.
|
236 |
-
input_word_ids = tf_keras.layers.Input(shape=(seq_length,), dtype=tf.int32)
|
237 |
-
input_mask = tf_keras.layers.Input(shape=(seq_length,), dtype=tf.int32)
|
238 |
-
input_type_ids = tf_keras.layers.Input(shape=(seq_length,), dtype=tf.int32)
|
239 |
-
input_dict = dict(
|
240 |
-
input_word_ids=input_word_ids,
|
241 |
-
input_mask=input_mask,
|
242 |
-
input_type_ids=input_type_ids)
|
243 |
-
output_dict = hub_layer(input_dict)
|
244 |
-
pooled_output = output_dict["pooled_output"]
|
245 |
-
sequence_output = output_dict["sequence_output"]
|
246 |
-
encoder_outputs = output_dict["encoder_outputs"]
|
247 |
-
|
248 |
-
self.assertEqual(pooled_output.shape.as_list(), [None, hidden_size])
|
249 |
-
self.assertEqual(sequence_output.shape.as_list(),
|
250 |
-
[None, seq_length, hidden_size])
|
251 |
-
self.assertLen(encoder_outputs, num_hidden_layers)
|
252 |
-
|
253 |
-
|
254 |
-
class ExportModelWithMLMTest(tf.test.TestCase, parameterized.TestCase):
|
255 |
-
"""Tests exporting a Transformer Encoder model as a SavedModel.
|
256 |
-
|
257 |
-
This covers export from a Pretrainer checkpoint to a SavedModel including
|
258 |
-
the .mlm subobject, which is the preferred way since 2020.
|
259 |
-
|
260 |
-
The export code is generic. This test focuses on two main cases
|
261 |
-
(the most important ones in practice when this was written in 2020):
|
262 |
-
- BERT built from a legacy BertConfig, for use with BertTokenizer.
|
263 |
-
- ALBERT built from an EncoderConfig (as a representative of all other
|
264 |
-
choices beyond BERT, for use with SentencepieceTokenizer (the one
|
265 |
-
alternative to BertTokenizer).
|
266 |
-
"""
|
267 |
-
|
268 |
-
def test_copy_pooler_dense_to_encoder(self):
|
269 |
-
encoder_config = encoders.EncoderConfig(
|
270 |
-
type="bert",
|
271 |
-
bert=encoders.BertEncoderConfig(
|
272 |
-
hidden_size=24, intermediate_size=48, num_layers=2))
|
273 |
-
cls_heads = [
|
274 |
-
layers.ClassificationHead(
|
275 |
-
inner_dim=24, num_classes=2, name="next_sentence")
|
276 |
-
]
|
277 |
-
encoder = encoders.build_encoder(encoder_config)
|
278 |
-
pretrainer = models.BertPretrainerV2(
|
279 |
-
encoder_network=encoder,
|
280 |
-
classification_heads=cls_heads,
|
281 |
-
mlm_activation=tf_utils.get_activation(
|
282 |
-
encoder_config.get().hidden_activation))
|
283 |
-
# Makes sure the pretrainer variables are created.
|
284 |
-
_ = pretrainer(pretrainer.inputs)
|
285 |
-
checkpoint = tf.train.Checkpoint(**pretrainer.checkpoint_items)
|
286 |
-
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
|
287 |
-
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
|
288 |
-
|
289 |
-
vocab_file, sp_model_file = _get_vocab_or_sp_model_dummy(
|
290 |
-
self.get_temp_dir(), use_sp_model=True)
|
291 |
-
export_path = os.path.join(self.get_temp_dir(), "hub")
|
292 |
-
export_tfhub_lib.export_model(
|
293 |
-
export_path=export_path,
|
294 |
-
encoder_config=encoder_config,
|
295 |
-
model_checkpoint_path=tf.train.latest_checkpoint(model_checkpoint_dir),
|
296 |
-
with_mlm=True,
|
297 |
-
copy_pooler_dense_to_encoder=True,
|
298 |
-
vocab_file=vocab_file,
|
299 |
-
sp_model_file=sp_model_file,
|
300 |
-
do_lower_case=True)
|
301 |
-
# Restores a hub KerasLayer.
|
302 |
-
hub_layer = hub.KerasLayer(export_path, trainable=True)
|
303 |
-
dummy_ids = np.zeros((2, 10), dtype=np.int32)
|
304 |
-
input_dict = dict(
|
305 |
-
input_word_ids=dummy_ids,
|
306 |
-
input_mask=dummy_ids,
|
307 |
-
input_type_ids=dummy_ids)
|
308 |
-
hub_pooled_output = hub_layer(input_dict)["pooled_output"]
|
309 |
-
encoder_outputs = encoder(input_dict)
|
310 |
-
# Verify that hub_layer's pooled_output is the same as the output of next
|
311 |
-
# sentence prediction's dense layer.
|
312 |
-
pretrained_pooled_output = cls_heads[0].dense(
|
313 |
-
(encoder_outputs["sequence_output"][:, 0, :]))
|
314 |
-
self.assertAllClose(hub_pooled_output, pretrained_pooled_output)
|
315 |
-
# But the pooled_output between encoder and hub_layer are not the same.
|
316 |
-
encoder_pooled_output = encoder_outputs["pooled_output"]
|
317 |
-
self.assertNotAllClose(hub_pooled_output, encoder_pooled_output)
|
318 |
-
|
319 |
-
@parameterized.named_parameters(
|
320 |
-
("Bert", True),
|
321 |
-
("Albert", False),
|
322 |
-
)
|
323 |
-
def test_export_model_with_mlm(self, use_bert):
|
324 |
-
# Create the encoder and export it.
|
325 |
-
hidden_size = 16
|
326 |
-
num_hidden_layers = 2
|
327 |
-
bert_config, encoder_config = _get_bert_config_or_encoder_config(
|
328 |
-
use_bert, hidden_size, num_hidden_layers)
|
329 |
-
bert_model, pretrainer = export_tfhub_lib._create_model(
|
330 |
-
bert_config=bert_config, encoder_config=encoder_config, with_mlm=True)
|
331 |
-
self.assertEmpty(
|
332 |
-
_find_lambda_layers(bert_model),
|
333 |
-
"Lambda layers are non-portable since they serialize Python bytecode.")
|
334 |
-
bert_model_with_mlm = bert_model.mlm
|
335 |
-
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
|
336 |
-
|
337 |
-
checkpoint = tf.train.Checkpoint(**pretrainer.checkpoint_items)
|
338 |
-
|
339 |
-
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
|
340 |
-
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
|
341 |
-
|
342 |
-
vocab_file, sp_model_file = _get_vocab_or_sp_model_dummy(
|
343 |
-
self.get_temp_dir(), use_sp_model=not use_bert)
|
344 |
-
export_path = os.path.join(self.get_temp_dir(), "hub")
|
345 |
-
export_tfhub_lib.export_model(
|
346 |
-
export_path=export_path,
|
347 |
-
bert_config=bert_config,
|
348 |
-
encoder_config=encoder_config,
|
349 |
-
model_checkpoint_path=model_checkpoint_path,
|
350 |
-
with_mlm=True,
|
351 |
-
vocab_file=vocab_file,
|
352 |
-
sp_model_file=sp_model_file,
|
353 |
-
do_lower_case=True)
|
354 |
-
|
355 |
-
# Restore the exported model.
|
356 |
-
hub_layer = hub.KerasLayer(export_path, trainable=True)
|
357 |
-
|
358 |
-
# Check legacy tokenization data.
|
359 |
-
if use_bert:
|
360 |
-
self.assertTrue(hub_layer.resolved_object.do_lower_case.numpy())
|
361 |
-
self.assertEqual("dummy content",
|
362 |
-
_read_asset(hub_layer.resolved_object.vocab_file))
|
363 |
-
self.assertFalse(hasattr(hub_layer.resolved_object, "sp_model_file"))
|
364 |
-
else:
|
365 |
-
self.assertFalse(hasattr(hub_layer.resolved_object, "do_lower_case"))
|
366 |
-
self.assertFalse(hasattr(hub_layer.resolved_object, "vocab_file"))
|
367 |
-
self.assertEqual("dummy content",
|
368 |
-
_read_asset(hub_layer.resolved_object.sp_model_file))
|
369 |
-
|
370 |
-
# Check restored weights.
|
371 |
-
# Note that we set `_auto_track_sub_layers` to False when exporting the
|
372 |
-
# SavedModel, so hub_layer has the same number of weights as bert_model;
|
373 |
-
# otherwise, hub_layer will have extra weights from its `mlm` subobject.
|
374 |
-
self.assertEqual(
|
375 |
-
len(bert_model.trainable_weights), len(hub_layer.trainable_weights))
|
376 |
-
for source_weight, hub_weight in zip(bert_model.trainable_weights,
|
377 |
-
hub_layer.trainable_weights):
|
378 |
-
self.assertAllClose(source_weight, hub_weight)
|
379 |
-
|
380 |
-
# Check computation.
|
381 |
-
seq_length = 10
|
382 |
-
dummy_ids = np.zeros((2, seq_length), dtype=np.int32)
|
383 |
-
input_dict = dict(
|
384 |
-
input_word_ids=dummy_ids,
|
385 |
-
input_mask=dummy_ids,
|
386 |
-
input_type_ids=dummy_ids)
|
387 |
-
hub_outputs_dict = hub_layer(input_dict)
|
388 |
-
source_outputs_dict = bert_model(input_dict)
|
389 |
-
encoder_outputs_dict = pretrainer.encoder_network(
|
390 |
-
[dummy_ids, dummy_ids, dummy_ids])
|
391 |
-
self.assertEqual(hub_outputs_dict["pooled_output"].shape, (2, hidden_size))
|
392 |
-
self.assertEqual(hub_outputs_dict["sequence_output"].shape,
|
393 |
-
(2, seq_length, hidden_size))
|
394 |
-
for output_key in ("pooled_output", "sequence_output", "encoder_outputs"):
|
395 |
-
self.assertAllClose(source_outputs_dict[output_key],
|
396 |
-
hub_outputs_dict[output_key])
|
397 |
-
self.assertAllClose(source_outputs_dict[output_key],
|
398 |
-
encoder_outputs_dict[output_key])
|
399 |
-
|
400 |
-
# The "default" output of BERT as a text representation is pooled_output.
|
401 |
-
self.assertAllClose(hub_outputs_dict["pooled_output"],
|
402 |
-
hub_outputs_dict["default"])
|
403 |
-
|
404 |
-
# Test that training=True makes a difference (activates dropout).
|
405 |
-
def _dropout_mean_stddev(training, num_runs=20):
|
406 |
-
input_ids = np.array([[14, 12, 42, 95, 99]], np.int32)
|
407 |
-
input_dict = dict(
|
408 |
-
input_word_ids=input_ids,
|
409 |
-
input_mask=np.ones_like(input_ids),
|
410 |
-
input_type_ids=np.zeros_like(input_ids))
|
411 |
-
outputs = np.concatenate([
|
412 |
-
hub_layer(input_dict, training=training)["pooled_output"]
|
413 |
-
for _ in range(num_runs)
|
414 |
-
])
|
415 |
-
return np.mean(np.std(outputs, axis=0))
|
416 |
-
|
417 |
-
self.assertLess(_dropout_mean_stddev(training=False), 1e-6)
|
418 |
-
self.assertGreater(_dropout_mean_stddev(training=True), 1e-3)
|
419 |
-
|
420 |
-
# Checks sub-object `mlm`.
|
421 |
-
self.assertTrue(hasattr(hub_layer.resolved_object, "mlm"))
|
422 |
-
|
423 |
-
self.assertLen(hub_layer.resolved_object.mlm.trainable_variables,
|
424 |
-
len(bert_model_with_mlm.trainable_weights))
|
425 |
-
self.assertLen(hub_layer.resolved_object.mlm.trainable_variables,
|
426 |
-
len(pretrainer.trainable_weights))
|
427 |
-
for source_weight, hub_weight, pretrainer_weight in zip(
|
428 |
-
bert_model_with_mlm.trainable_weights,
|
429 |
-
hub_layer.resolved_object.mlm.trainable_variables,
|
430 |
-
pretrainer.trainable_weights):
|
431 |
-
self.assertAllClose(source_weight, hub_weight)
|
432 |
-
self.assertAllClose(source_weight, pretrainer_weight)
|
433 |
-
|
434 |
-
max_predictions_per_seq = 4
|
435 |
-
mlm_positions = np.zeros((2, max_predictions_per_seq), dtype=np.int32)
|
436 |
-
input_dict = dict(
|
437 |
-
input_word_ids=dummy_ids,
|
438 |
-
input_mask=dummy_ids,
|
439 |
-
input_type_ids=dummy_ids,
|
440 |
-
masked_lm_positions=mlm_positions)
|
441 |
-
hub_mlm_outputs_dict = hub_layer.resolved_object.mlm(input_dict)
|
442 |
-
source_mlm_outputs_dict = bert_model_with_mlm(input_dict)
|
443 |
-
for output_key in ("pooled_output", "sequence_output", "mlm_logits",
|
444 |
-
"encoder_outputs"):
|
445 |
-
self.assertAllClose(hub_mlm_outputs_dict[output_key],
|
446 |
-
source_mlm_outputs_dict[output_key])
|
447 |
-
|
448 |
-
pretrainer_mlm_logits_output = pretrainer(input_dict)["mlm_logits"]
|
449 |
-
self.assertAllClose(hub_mlm_outputs_dict["mlm_logits"],
|
450 |
-
pretrainer_mlm_logits_output)
|
451 |
-
|
452 |
-
# Test that training=True makes a difference (activates dropout).
|
453 |
-
def _dropout_mean_stddev_mlm(training, num_runs=20):
|
454 |
-
input_ids = np.array([[14, 12, 42, 95, 99]], np.int32)
|
455 |
-
mlm_position_ids = np.array([[1, 2, 3, 4]], np.int32)
|
456 |
-
input_dict = dict(
|
457 |
-
input_word_ids=input_ids,
|
458 |
-
input_mask=np.ones_like(input_ids),
|
459 |
-
input_type_ids=np.zeros_like(input_ids),
|
460 |
-
masked_lm_positions=mlm_position_ids)
|
461 |
-
outputs = np.concatenate([
|
462 |
-
hub_layer.resolved_object.mlm(input_dict,
|
463 |
-
training=training)["pooled_output"]
|
464 |
-
for _ in range(num_runs)
|
465 |
-
])
|
466 |
-
return np.mean(np.std(outputs, axis=0))
|
467 |
-
|
468 |
-
self.assertLess(_dropout_mean_stddev_mlm(training=False), 1e-6)
|
469 |
-
self.assertGreater(_dropout_mean_stddev_mlm(training=True), 1e-3)
|
470 |
-
|
471 |
-
# Test propagation of seq_length in shape inference.
|
472 |
-
input_word_ids = tf_keras.layers.Input(shape=(seq_length,), dtype=tf.int32)
|
473 |
-
input_mask = tf_keras.layers.Input(shape=(seq_length,), dtype=tf.int32)
|
474 |
-
input_type_ids = tf_keras.layers.Input(shape=(seq_length,), dtype=tf.int32)
|
475 |
-
input_dict = dict(
|
476 |
-
input_word_ids=input_word_ids,
|
477 |
-
input_mask=input_mask,
|
478 |
-
input_type_ids=input_type_ids)
|
479 |
-
hub_outputs_dict = hub_layer(input_dict)
|
480 |
-
self.assertEqual(hub_outputs_dict["pooled_output"].shape.as_list(),
|
481 |
-
[None, hidden_size])
|
482 |
-
self.assertEqual(hub_outputs_dict["sequence_output"].shape.as_list(),
|
483 |
-
[None, seq_length, hidden_size])
|
484 |
-
|
485 |
-
|
486 |
-
_STRING_NOT_TO_LEAK = "private_path_component_"
|
487 |
-
|
488 |
-
|
489 |
-
class ExportPreprocessingTest(tf.test.TestCase, parameterized.TestCase):
|
490 |
-
|
491 |
-
def _make_vocab_file(self, vocab, filename="vocab.txt", add_mask_token=False):
|
492 |
-
"""Creates wordpiece vocab file with given words plus special tokens.
|
493 |
-
|
494 |
-
The tokens of the resulting model are, in this order:
|
495 |
-
[PAD], [UNK], [CLS], [SEP], [MASK]*, ...vocab...
|
496 |
-
*=if requested by args.
|
497 |
-
|
498 |
-
This function also accepts wordpieces that start with the ## continuation
|
499 |
-
marker, but avoiding those makes this function interchangeable with
|
500 |
-
_make_sp_model_file(), up to the extra dimension returned by BertTokenizer.
|
501 |
-
|
502 |
-
Args:
|
503 |
-
vocab: a list of strings with the words or wordpieces to put into the
|
504 |
-
model's vocabulary. Do not include special tokens here.
|
505 |
-
filename: Optionally, a filename (relative to the temporary directory
|
506 |
-
created by this function).
|
507 |
-
add_mask_token: an optional bool, whether to include a [MASK] token.
|
508 |
-
|
509 |
-
Returns:
|
510 |
-
The absolute filename of the created vocab file.
|
511 |
-
"""
|
512 |
-
full_vocab = ["[PAD]", "[UNK]", "[CLS]", "[SEP]"
|
513 |
-
] + ["[MASK]"] * add_mask_token + vocab
|
514 |
-
path = os.path.join(
|
515 |
-
tempfile.mkdtemp(
|
516 |
-
dir=self.get_temp_dir(), # New subdir each time.
|
517 |
-
prefix=_STRING_NOT_TO_LEAK),
|
518 |
-
filename)
|
519 |
-
with tf.io.gfile.GFile(path, "w") as f:
|
520 |
-
f.write("\n".join(full_vocab + [""]))
|
521 |
-
return path
|
522 |
-
|
523 |
-
def _make_sp_model_file(self, vocab, prefix="spm", add_mask_token=False):
|
524 |
-
"""Creates Sentencepiece word model with given words plus special tokens.
|
525 |
-
|
526 |
-
The tokens of the resulting model are, in this order:
|
527 |
-
<pad>, <unk>, [CLS], [SEP], [MASK]*, ...vocab..., <s>, </s>
|
528 |
-
*=if requested by args.
|
529 |
-
|
530 |
-
The words in the input vocab are plain text, without the whitespace marker.
|
531 |
-
That makes this function interchangeable with _make_vocab_file().
|
532 |
-
|
533 |
-
Args:
|
534 |
-
vocab: a list of strings with the words to put into the model's
|
535 |
-
vocabulary. Do not include special tokens here.
|
536 |
-
prefix: an optional string, to change the filename prefix for the model
|
537 |
-
(relative to the temporary directory created by this function).
|
538 |
-
add_mask_token: an optional bool, whether to include a [MASK] token.
|
539 |
-
|
540 |
-
Returns:
|
541 |
-
The absolute filename of the created Sentencepiece model file.
|
542 |
-
"""
|
543 |
-
model_prefix = os.path.join(
|
544 |
-
tempfile.mkdtemp(dir=self.get_temp_dir()), # New subdir each time.
|
545 |
-
prefix)
|
546 |
-
input_file = model_prefix + "_train_input.txt"
|
547 |
-
# Create input text for training the sp model from the tokens provided.
|
548 |
-
# Repeat tokens, the earlier the more, because they are sorted by frequency.
|
549 |
-
input_text = []
|
550 |
-
for i, token in enumerate(vocab):
|
551 |
-
input_text.append(" ".join([token] * (len(vocab) - i)))
|
552 |
-
with tf.io.gfile.GFile(input_file, "w") as f:
|
553 |
-
f.write("\n".join(input_text + [""]))
|
554 |
-
control_symbols = "[CLS],[SEP]"
|
555 |
-
full_vocab_size = len(vocab) + 6 # <pad>, <unk>, [CLS], [SEP], <s>, </s>.
|
556 |
-
if add_mask_token:
|
557 |
-
control_symbols += ",[MASK]"
|
558 |
-
full_vocab_size += 1
|
559 |
-
flags = dict(
|
560 |
-
model_prefix=model_prefix,
|
561 |
-
model_type="word",
|
562 |
-
input=input_file,
|
563 |
-
pad_id=0,
|
564 |
-
unk_id=1,
|
565 |
-
control_symbols=control_symbols,
|
566 |
-
vocab_size=full_vocab_size,
|
567 |
-
bos_id=full_vocab_size - 2,
|
568 |
-
eos_id=full_vocab_size - 1)
|
569 |
-
SentencePieceTrainer.Train(" ".join(
|
570 |
-
["--{}={}".format(k, v) for k, v in flags.items()]))
|
571 |
-
return model_prefix + ".model"
|
572 |
-
|
573 |
-
def _do_export(self,
|
574 |
-
vocab,
|
575 |
-
do_lower_case,
|
576 |
-
default_seq_length=128,
|
577 |
-
tokenize_with_offsets=True,
|
578 |
-
use_sp_model=False,
|
579 |
-
experimental_disable_assert=False,
|
580 |
-
add_mask_token=False):
|
581 |
-
"""Runs SavedModel export and returns the export_path."""
|
582 |
-
export_path = tempfile.mkdtemp(dir=self.get_temp_dir())
|
583 |
-
vocab_file = sp_model_file = None
|
584 |
-
if use_sp_model:
|
585 |
-
sp_model_file = self._make_sp_model_file(
|
586 |
-
vocab, add_mask_token=add_mask_token)
|
587 |
-
else:
|
588 |
-
vocab_file = self._make_vocab_file(vocab, add_mask_token=add_mask_token)
|
589 |
-
export_tfhub_lib.export_preprocessing(
|
590 |
-
export_path,
|
591 |
-
vocab_file=vocab_file,
|
592 |
-
sp_model_file=sp_model_file,
|
593 |
-
do_lower_case=do_lower_case,
|
594 |
-
tokenize_with_offsets=tokenize_with_offsets,
|
595 |
-
default_seq_length=default_seq_length,
|
596 |
-
experimental_disable_assert=experimental_disable_assert)
|
597 |
-
# Invalidate the original filename to verify loading from the SavedModel.
|
598 |
-
tf.io.gfile.remove(sp_model_file or vocab_file)
|
599 |
-
return export_path
|
600 |
-
|
601 |
-
def test_no_leaks(self):
|
602 |
-
"""Tests not leaking the path to the original vocab file."""
|
603 |
-
path = self._do_export(["d", "ef", "abc", "xy"],
|
604 |
-
do_lower_case=True,
|
605 |
-
use_sp_model=False)
|
606 |
-
with tf.io.gfile.GFile(os.path.join(path, "saved_model.pb"), "rb") as f:
|
607 |
-
self.assertFalse( # pylint: disable=g-generic-assert
|
608 |
-
_STRING_NOT_TO_LEAK.encode("ascii") in f.read())
|
609 |
-
|
610 |
-
@parameterized.named_parameters(("Bert", False), ("Sentencepiece", True))
|
611 |
-
def test_exported_callables(self, use_sp_model):
|
612 |
-
preprocess = tf.saved_model.load(
|
613 |
-
self._do_export(
|
614 |
-
["d", "ef", "abc", "xy"],
|
615 |
-
do_lower_case=True,
|
616 |
-
# TODO(b/181866850): drop this.
|
617 |
-
tokenize_with_offsets=not use_sp_model,
|
618 |
-
# TODO(b/175369555): drop this.
|
619 |
-
experimental_disable_assert=True,
|
620 |
-
use_sp_model=use_sp_model))
|
621 |
-
|
622 |
-
def fold_dim(rt):
|
623 |
-
"""Removes the word/subword distinction of BertTokenizer."""
|
624 |
-
return rt if use_sp_model else rt.merge_dims(1, 2)
|
625 |
-
|
626 |
-
# .tokenize()
|
627 |
-
inputs = tf.constant(["abc d ef", "ABC D EF d"])
|
628 |
-
token_ids = preprocess.tokenize(inputs)
|
629 |
-
self.assertAllEqual(
|
630 |
-
fold_dim(token_ids), tf.ragged.constant([[6, 4, 5], [6, 4, 5, 4]]))
|
631 |
-
|
632 |
-
special_tokens_dict = {
|
633 |
-
k: v.numpy().item() # Expecting eager Tensor, converting to Python.
|
634 |
-
for k, v in preprocess.tokenize.get_special_tokens_dict().items()
|
635 |
-
}
|
636 |
-
self.assertDictEqual(
|
637 |
-
special_tokens_dict,
|
638 |
-
dict(
|
639 |
-
padding_id=0,
|
640 |
-
start_of_sequence_id=2,
|
641 |
-
end_of_segment_id=3,
|
642 |
-
vocab_size=4 + 6 if use_sp_model else 4 + 4))
|
643 |
-
|
644 |
-
# .tokenize_with_offsets()
|
645 |
-
if use_sp_model:
|
646 |
-
# TODO(b/181866850): Enable tokenize_with_offsets when it works and test.
|
647 |
-
self.assertFalse(hasattr(preprocess, "tokenize_with_offsets"))
|
648 |
-
else:
|
649 |
-
token_ids, start_offsets, limit_offsets = (
|
650 |
-
preprocess.tokenize_with_offsets(inputs))
|
651 |
-
self.assertAllEqual(
|
652 |
-
fold_dim(token_ids), tf.ragged.constant([[6, 4, 5], [6, 4, 5, 4]]))
|
653 |
-
self.assertAllEqual(
|
654 |
-
fold_dim(start_offsets), tf.ragged.constant([[0, 4, 6], [0, 4, 6,
|
655 |
-
9]]))
|
656 |
-
self.assertAllEqual(
|
657 |
-
fold_dim(limit_offsets), tf.ragged.constant([[3, 5, 8], [3, 5, 8,
|
658 |
-
10]]))
|
659 |
-
self.assertIs(preprocess.tokenize.get_special_tokens_dict,
|
660 |
-
preprocess.tokenize_with_offsets.get_special_tokens_dict)
|
661 |
-
|
662 |
-
# Root callable.
|
663 |
-
bert_inputs = preprocess(inputs)
|
664 |
-
self.assertAllEqual(bert_inputs["input_word_ids"].shape.as_list(), [2, 128])
|
665 |
-
self.assertAllEqual(
|
666 |
-
bert_inputs["input_word_ids"][:, :10],
|
667 |
-
tf.constant([[2, 6, 4, 5, 3, 0, 0, 0, 0, 0],
|
668 |
-
[2, 6, 4, 5, 4, 3, 0, 0, 0, 0]]))
|
669 |
-
self.assertAllEqual(bert_inputs["input_mask"].shape.as_list(), [2, 128])
|
670 |
-
self.assertAllEqual(
|
671 |
-
bert_inputs["input_mask"][:, :10],
|
672 |
-
tf.constant([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
|
673 |
-
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0]]))
|
674 |
-
self.assertAllEqual(bert_inputs["input_type_ids"].shape.as_list(), [2, 128])
|
675 |
-
self.assertAllEqual(
|
676 |
-
bert_inputs["input_type_ids"][:, :10],
|
677 |
-
tf.constant([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
678 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))
|
679 |
-
|
680 |
-
# .bert_pack_inputs()
|
681 |
-
inputs_2 = tf.constant(["d xy", "xy abc"])
|
682 |
-
token_ids_2 = preprocess.tokenize(inputs_2)
|
683 |
-
bert_inputs = preprocess.bert_pack_inputs([token_ids, token_ids_2],
|
684 |
-
seq_length=256)
|
685 |
-
self.assertAllEqual(bert_inputs["input_word_ids"].shape.as_list(), [2, 256])
|
686 |
-
self.assertAllEqual(
|
687 |
-
bert_inputs["input_word_ids"][:, :10],
|
688 |
-
tf.constant([[2, 6, 4, 5, 3, 4, 7, 3, 0, 0],
|
689 |
-
[2, 6, 4, 5, 4, 3, 7, 6, 3, 0]]))
|
690 |
-
self.assertAllEqual(bert_inputs["input_mask"].shape.as_list(), [2, 256])
|
691 |
-
self.assertAllEqual(
|
692 |
-
bert_inputs["input_mask"][:, :10],
|
693 |
-
tf.constant([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
694 |
-
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]]))
|
695 |
-
self.assertAllEqual(bert_inputs["input_type_ids"].shape.as_list(), [2, 256])
|
696 |
-
self.assertAllEqual(
|
697 |
-
bert_inputs["input_type_ids"][:, :10],
|
698 |
-
tf.constant([[0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
|
699 |
-
[0, 0, 0, 0, 0, 0, 1, 1, 1, 0]]))
|
700 |
-
|
701 |
-
# For BertTokenizer only: repeat relevant parts for do_lower_case=False,
|
702 |
-
# default_seq_length=10, experimental_disable_assert=False,
|
703 |
-
# tokenize_with_offsets=False, and without folding the word/subword dimension.
|
704 |
-
def test_cased_length10(self):
|
705 |
-
preprocess = tf.saved_model.load(
|
706 |
-
self._do_export(["d", "##ef", "abc", "ABC"],
|
707 |
-
do_lower_case=False,
|
708 |
-
default_seq_length=10,
|
709 |
-
tokenize_with_offsets=False,
|
710 |
-
use_sp_model=False,
|
711 |
-
experimental_disable_assert=False))
|
712 |
-
inputs = tf.constant(["abc def", "ABC DEF"])
|
713 |
-
token_ids = preprocess.tokenize(inputs)
|
714 |
-
self.assertAllEqual(token_ids,
|
715 |
-
tf.ragged.constant([[[6], [4, 5]], [[7], [1]]]))
|
716 |
-
|
717 |
-
self.assertFalse(hasattr(preprocess, "tokenize_with_offsets"))
|
718 |
-
|
719 |
-
bert_inputs = preprocess(inputs)
|
720 |
-
self.assertAllEqual(
|
721 |
-
bert_inputs["input_word_ids"],
|
722 |
-
tf.constant([[2, 6, 4, 5, 3, 0, 0, 0, 0, 0],
|
723 |
-
[2, 7, 1, 3, 0, 0, 0, 0, 0, 0]]))
|
724 |
-
self.assertAllEqual(
|
725 |
-
bert_inputs["input_mask"],
|
726 |
-
tf.constant([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
|
727 |
-
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0]]))
|
728 |
-
self.assertAllEqual(
|
729 |
-
bert_inputs["input_type_ids"],
|
730 |
-
tf.constant([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
731 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))
|
732 |
-
|
733 |
-
inputs_2 = tf.constant(["d ABC", "ABC abc"])
|
734 |
-
token_ids_2 = preprocess.tokenize(inputs_2)
|
735 |
-
bert_inputs = preprocess.bert_pack_inputs([token_ids, token_ids_2])
|
736 |
-
# Test default seq_length=10.
|
737 |
-
self.assertAllEqual(
|
738 |
-
bert_inputs["input_word_ids"],
|
739 |
-
tf.constant([[2, 6, 4, 5, 3, 4, 7, 3, 0, 0],
|
740 |
-
[2, 7, 1, 3, 7, 6, 3, 0, 0, 0]]))
|
741 |
-
self.assertAllEqual(
|
742 |
-
bert_inputs["input_mask"],
|
743 |
-
tf.constant([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
|
744 |
-
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0]]))
|
745 |
-
self.assertAllEqual(
|
746 |
-
bert_inputs["input_type_ids"],
|
747 |
-
tf.constant([[0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
|
748 |
-
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]]))
|
749 |
-
|
750 |
-
# XLA requires fixed shapes for tensors found in graph mode.
|
751 |
-
# Statically known shapes in Python are a particularly firm way to
|
752 |
-
# guarantee that, and they are generally more convenient to work with.
|
753 |
-
# We test that the exported SavedModel plays well with TF's shape
|
754 |
-
# inference when applied to fully or partially known input shapes.
|
755 |
-
@parameterized.named_parameters(("Bert", False), ("Sentencepiece", True))
|
756 |
-
def test_shapes(self, use_sp_model):
|
757 |
-
preprocess = tf.saved_model.load(
|
758 |
-
self._do_export(
|
759 |
-
["abc", "def"],
|
760 |
-
do_lower_case=True,
|
761 |
-
# TODO(b/181866850): drop this.
|
762 |
-
tokenize_with_offsets=not use_sp_model,
|
763 |
-
# TODO(b/175369555): drop this.
|
764 |
-
experimental_disable_assert=True,
|
765 |
-
use_sp_model=use_sp_model))
|
766 |
-
|
767 |
-
def expected_bert_input_shapes(batch_size, seq_length):
|
768 |
-
return dict(
|
769 |
-
input_word_ids=[batch_size, seq_length],
|
770 |
-
input_mask=[batch_size, seq_length],
|
771 |
-
input_type_ids=[batch_size, seq_length])
|
772 |
-
|
773 |
-
for batch_size in [7, None]:
|
774 |
-
if use_sp_model:
|
775 |
-
token_out_shape = [batch_size, None] # No word/subword distinction.
|
776 |
-
else:
|
777 |
-
token_out_shape = [batch_size, None, None]
|
778 |
-
self.assertEqual(
|
779 |
-
_result_shapes_in_tf_function(preprocess.tokenize,
|
780 |
-
tf.TensorSpec([batch_size], tf.string)),
|
781 |
-
token_out_shape, "with batch_size=%s" % batch_size)
|
782 |
-
# TODO(b/181866850): Enable tokenize_with_offsets when it works and test.
|
783 |
-
if use_sp_model:
|
784 |
-
self.assertFalse(hasattr(preprocess, "tokenize_with_offsets"))
|
785 |
-
else:
|
786 |
-
self.assertEqual(
|
787 |
-
_result_shapes_in_tf_function(
|
788 |
-
preprocess.tokenize_with_offsets,
|
789 |
-
tf.TensorSpec([batch_size], tf.string)), [token_out_shape] * 3,
|
790 |
-
"with batch_size=%s" % batch_size)
|
791 |
-
self.assertEqual(
|
792 |
-
_result_shapes_in_tf_function(
|
793 |
-
preprocess.bert_pack_inputs,
|
794 |
-
[tf.RaggedTensorSpec([batch_size, None, None], tf.int32)] * 2,
|
795 |
-
seq_length=256), expected_bert_input_shapes(batch_size, 256),
|
796 |
-
"with batch_size=%s" % batch_size)
|
797 |
-
self.assertEqual(
|
798 |
-
_result_shapes_in_tf_function(preprocess,
|
799 |
-
tf.TensorSpec([batch_size], tf.string)),
|
800 |
-
expected_bert_input_shapes(batch_size, 128),
|
801 |
-
"with batch_size=%s" % batch_size)
|
802 |
-
|
803 |
-
@parameterized.named_parameters(("Bert", False), ("Sentencepiece", True))
|
804 |
-
def test_reexport(self, use_sp_model):
|
805 |
-
"""Test that preprocess keeps working after another save/load cycle."""
|
806 |
-
path1 = self._do_export(
|
807 |
-
["d", "ef", "abc", "xy"],
|
808 |
-
do_lower_case=True,
|
809 |
-
default_seq_length=10,
|
810 |
-
tokenize_with_offsets=False,
|
811 |
-
experimental_disable_assert=True, # TODO(b/175369555): drop this.
|
812 |
-
use_sp_model=use_sp_model)
|
813 |
-
path2 = path1.rstrip("/") + ".2"
|
814 |
-
model1 = tf.saved_model.load(path1)
|
815 |
-
tf.saved_model.save(model1, path2)
|
816 |
-
# Delete the first SavedModel to test that the sceond one loads by itself.
|
817 |
-
# https://github.com/tensorflow/tensorflow/issues/46456 reports such a
|
818 |
-
# failure case for BertTokenizer.
|
819 |
-
tf.io.gfile.rmtree(path1)
|
820 |
-
model2 = tf.saved_model.load(path2)
|
821 |
-
|
822 |
-
inputs = tf.constant(["abc d ef", "ABC D EF d"])
|
823 |
-
bert_inputs = model2(inputs)
|
824 |
-
self.assertAllEqual(
|
825 |
-
bert_inputs["input_word_ids"],
|
826 |
-
tf.constant([[2, 6, 4, 5, 3, 0, 0, 0, 0, 0],
|
827 |
-
[2, 6, 4, 5, 4, 3, 0, 0, 0, 0]]))
|
828 |
-
self.assertAllEqual(
|
829 |
-
bert_inputs["input_mask"],
|
830 |
-
tf.constant([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
|
831 |
-
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0]]))
|
832 |
-
self.assertAllEqual(
|
833 |
-
bert_inputs["input_type_ids"],
|
834 |
-
tf.constant([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
835 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))
|
836 |
-
|
837 |
-
@parameterized.named_parameters(("Bert", True), ("Albert", False))
|
838 |
-
def test_preprocessing_for_mlm(self, use_bert):
|
839 |
-
"""Combines both SavedModel types and TF.text helpers for MLM."""
|
840 |
-
# Create the preprocessing SavedModel with a [MASK] token.
|
841 |
-
non_special_tokens = [
|
842 |
-
"hello", "world", "nice", "movie", "great", "actors", "quick", "fox",
|
843 |
-
"lazy", "dog"
|
844 |
-
]
|
845 |
-
|
846 |
-
preprocess = tf.saved_model.load(
|
847 |
-
self._do_export(
|
848 |
-
non_special_tokens,
|
849 |
-
do_lower_case=True,
|
850 |
-
tokenize_with_offsets=use_bert, # TODO(b/181866850): drop this.
|
851 |
-
experimental_disable_assert=True, # TODO(b/175369555): drop this.
|
852 |
-
add_mask_token=True,
|
853 |
-
use_sp_model=not use_bert))
|
854 |
-
vocab_size = len(non_special_tokens) + (5 if use_bert else 7)
|
855 |
-
|
856 |
-
# Create the encoder SavedModel with an .mlm subobject.
|
857 |
-
hidden_size = 16
|
858 |
-
num_hidden_layers = 2
|
859 |
-
bert_config, encoder_config = _get_bert_config_or_encoder_config(
|
860 |
-
use_bert_config=use_bert,
|
861 |
-
hidden_size=hidden_size,
|
862 |
-
num_hidden_layers=num_hidden_layers,
|
863 |
-
vocab_size=vocab_size)
|
864 |
-
_, pretrainer = export_tfhub_lib._create_model(
|
865 |
-
bert_config=bert_config, encoder_config=encoder_config, with_mlm=True)
|
866 |
-
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
|
867 |
-
checkpoint = tf.train.Checkpoint(**pretrainer.checkpoint_items)
|
868 |
-
checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
|
869 |
-
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)
|
870 |
-
vocab_file, sp_model_file = _get_vocab_or_sp_model_dummy( # Not used below.
|
871 |
-
self.get_temp_dir(), use_sp_model=not use_bert)
|
872 |
-
encoder_export_path = os.path.join(self.get_temp_dir(), "encoder_export")
|
873 |
-
export_tfhub_lib.export_model(
|
874 |
-
export_path=encoder_export_path,
|
875 |
-
bert_config=bert_config,
|
876 |
-
encoder_config=encoder_config,
|
877 |
-
model_checkpoint_path=model_checkpoint_path,
|
878 |
-
with_mlm=True,
|
879 |
-
vocab_file=vocab_file,
|
880 |
-
sp_model_file=sp_model_file,
|
881 |
-
do_lower_case=True)
|
882 |
-
encoder = tf.saved_model.load(encoder_export_path)
|
883 |
-
|
884 |
-
# Get special tokens from the vocab (and vocab size).
|
885 |
-
special_tokens_dict = preprocess.tokenize.get_special_tokens_dict()
|
886 |
-
self.assertEqual(int(special_tokens_dict["vocab_size"]), vocab_size)
|
887 |
-
padding_id = int(special_tokens_dict["padding_id"])
|
888 |
-
self.assertEqual(padding_id, 0)
|
889 |
-
start_of_sequence_id = int(special_tokens_dict["start_of_sequence_id"])
|
890 |
-
self.assertEqual(start_of_sequence_id, 2)
|
891 |
-
end_of_segment_id = int(special_tokens_dict["end_of_segment_id"])
|
892 |
-
self.assertEqual(end_of_segment_id, 3)
|
893 |
-
mask_id = int(special_tokens_dict["mask_id"])
|
894 |
-
self.assertEqual(mask_id, 4)
|
895 |
-
|
896 |
-
# A batch of 3 segment pairs.
|
897 |
-
raw_segments = [
|
898 |
-
tf.constant(["hello", "nice movie", "quick fox"]),
|
899 |
-
tf.constant(["world", "great actors", "lazy dog"])
|
900 |
-
]
|
901 |
-
batch_size = 3
|
902 |
-
|
903 |
-
# Misc hyperparameters.
|
904 |
-
seq_length = 10
|
905 |
-
max_selections_per_seq = 2
|
906 |
-
|
907 |
-
# Tokenize inputs.
|
908 |
-
tokenized_segments = [preprocess.tokenize(s) for s in raw_segments]
|
909 |
-
# Trim inputs to eventually fit seq_lentgh.
|
910 |
-
num_special_tokens = len(raw_segments) + 1
|
911 |
-
trimmed_segments = text.WaterfallTrimmer(
|
912 |
-
seq_length - num_special_tokens).trim(tokenized_segments)
|
913 |
-
# Combine input segments into one input sequence.
|
914 |
-
input_ids, segment_ids = text.combine_segments(
|
915 |
-
trimmed_segments,
|
916 |
-
start_of_sequence_id=start_of_sequence_id,
|
917 |
-
end_of_segment_id=end_of_segment_id)
|
918 |
-
# Apply random masking controlled by policy objects.
|
919 |
-
(masked_input_ids, masked_lm_positions,
|
920 |
-
masked_ids) = text.mask_language_model(
|
921 |
-
input_ids=input_ids,
|
922 |
-
item_selector=text.RandomItemSelector(
|
923 |
-
max_selections_per_seq,
|
924 |
-
selection_rate=0.5, # Adjusted for the short test examples.
|
925 |
-
unselectable_ids=[start_of_sequence_id, end_of_segment_id]),
|
926 |
-
mask_values_chooser=text.MaskValuesChooser(
|
927 |
-
vocab_size=vocab_size,
|
928 |
-
mask_token=mask_id,
|
929 |
-
# Always put [MASK] to have a predictable result.
|
930 |
-
mask_token_rate=1.0,
|
931 |
-
random_token_rate=0.0))
|
932 |
-
# Pad to fixed-length Transformer encoder inputs.
|
933 |
-
input_word_ids, _ = text.pad_model_inputs(
|
934 |
-
masked_input_ids, seq_length, pad_value=padding_id)
|
935 |
-
input_type_ids, input_mask = text.pad_model_inputs(
|
936 |
-
segment_ids, seq_length, pad_value=0)
|
937 |
-
masked_lm_positions, _ = text.pad_model_inputs(
|
938 |
-
masked_lm_positions, max_selections_per_seq, pad_value=0)
|
939 |
-
masked_lm_positions = tf.cast(masked_lm_positions, tf.int32)
|
940 |
-
num_predictions = int(tf.shape(masked_lm_positions)[1])
|
941 |
-
|
942 |
-
# Test transformer inputs.
|
943 |
-
self.assertEqual(num_predictions, max_selections_per_seq)
|
944 |
-
expected_word_ids = np.array([
|
945 |
-
# [CLS] hello [SEP] world [SEP]
|
946 |
-
[2, 5, 3, 6, 3, 0, 0, 0, 0, 0],
|
947 |
-
# [CLS] nice movie [SEP] great actors [SEP]
|
948 |
-
[2, 7, 8, 3, 9, 10, 3, 0, 0, 0],
|
949 |
-
# [CLS] brown fox [SEP] lazy dog [SEP]
|
950 |
-
[2, 11, 12, 3, 13, 14, 3, 0, 0, 0]
|
951 |
-
])
|
952 |
-
for i in range(batch_size):
|
953 |
-
for j in range(num_predictions):
|
954 |
-
k = int(masked_lm_positions[i, j])
|
955 |
-
if k != 0:
|
956 |
-
expected_word_ids[i, k] = 4 # [MASK]
|
957 |
-
self.assertAllEqual(input_word_ids, expected_word_ids)
|
958 |
-
|
959 |
-
# Call the MLM head of the Transformer encoder.
|
960 |
-
mlm_inputs = dict(
|
961 |
-
input_word_ids=input_word_ids,
|
962 |
-
input_mask=input_mask,
|
963 |
-
input_type_ids=input_type_ids,
|
964 |
-
masked_lm_positions=masked_lm_positions,
|
965 |
-
)
|
966 |
-
mlm_outputs = encoder.mlm(mlm_inputs)
|
967 |
-
self.assertEqual(mlm_outputs["pooled_output"].shape,
|
968 |
-
(batch_size, hidden_size))
|
969 |
-
self.assertEqual(mlm_outputs["sequence_output"].shape,
|
970 |
-
(batch_size, seq_length, hidden_size))
|
971 |
-
self.assertEqual(mlm_outputs["mlm_logits"].shape,
|
972 |
-
(batch_size, num_predictions, vocab_size))
|
973 |
-
self.assertLen(mlm_outputs["encoder_outputs"], num_hidden_layers)
|
974 |
-
|
975 |
-
# A real trainer would now compute the loss of mlm_logits
|
976 |
-
# trying to predict the masked_ids.
|
977 |
-
del masked_ids # Unused.
|
978 |
-
|
979 |
-
@parameterized.named_parameters(("Bert", False), ("Sentencepiece", True))
|
980 |
-
def test_special_tokens_in_estimator(self, use_sp_model):
|
981 |
-
"""Tests getting special tokens without an Eager init context."""
|
982 |
-
preprocess_export_path = self._do_export(["d", "ef", "abc", "xy"],
|
983 |
-
do_lower_case=True,
|
984 |
-
use_sp_model=use_sp_model,
|
985 |
-
tokenize_with_offsets=False)
|
986 |
-
|
987 |
-
def _get_special_tokens_dict(obj):
|
988 |
-
"""Returns special tokens of restored tokenizer as Python values."""
|
989 |
-
if tf.executing_eagerly():
|
990 |
-
special_tokens_numpy = {
|
991 |
-
k: v.numpy() for k, v in obj.get_special_tokens_dict()
|
992 |
-
}
|
993 |
-
else:
|
994 |
-
with tf.Graph().as_default():
|
995 |
-
# This code expects `get_special_tokens_dict()` to be a tf.function
|
996 |
-
# with no dependencies (bound args) from the context it was loaded in,
|
997 |
-
# and boldly assumes that it can just be called in a dfferent context.
|
998 |
-
special_tokens_tensors = obj.get_special_tokens_dict()
|
999 |
-
with tf.compat.v1.Session() as sess:
|
1000 |
-
special_tokens_numpy = sess.run(special_tokens_tensors)
|
1001 |
-
return {
|
1002 |
-
k: v.item() # Numpy to Python.
|
1003 |
-
for k, v in special_tokens_numpy.items()
|
1004 |
-
}
|
1005 |
-
|
1006 |
-
def input_fn():
|
1007 |
-
self.assertFalse(tf.executing_eagerly())
|
1008 |
-
# Build a preprocessing Model.
|
1009 |
-
sentences = tf_keras.layers.Input(shape=[], dtype=tf.string)
|
1010 |
-
preprocess = tf.saved_model.load(preprocess_export_path)
|
1011 |
-
tokenize = hub.KerasLayer(preprocess.tokenize)
|
1012 |
-
special_tokens_dict = _get_special_tokens_dict(tokenize.resolved_object)
|
1013 |
-
for k, v in special_tokens_dict.items():
|
1014 |
-
self.assertIsInstance(v, int, "Unexpected type for {}".format(k))
|
1015 |
-
tokens = tokenize(sentences)
|
1016 |
-
packed_inputs = layers.BertPackInputs(
|
1017 |
-
4, special_tokens_dict=special_tokens_dict)(
|
1018 |
-
tokens)
|
1019 |
-
preprocessing = tf_keras.Model(sentences, packed_inputs)
|
1020 |
-
# Map the dataset.
|
1021 |
-
ds = tf.data.Dataset.from_tensors(
|
1022 |
-
(tf.constant(["abc", "D EF"]), tf.constant([0, 1])))
|
1023 |
-
ds = ds.map(lambda features, labels: (preprocessing(features), labels))
|
1024 |
-
return ds
|
1025 |
-
|
1026 |
-
def model_fn(features, labels, mode):
|
1027 |
-
del labels # Unused.
|
1028 |
-
return tf_estimator.EstimatorSpec(
|
1029 |
-
mode=mode, predictions=features["input_word_ids"])
|
1030 |
-
|
1031 |
-
estimator = tf_estimator.Estimator(model_fn=model_fn)
|
1032 |
-
outputs = list(estimator.predict(input_fn))
|
1033 |
-
self.assertAllEqual(outputs, np.array([[2, 6, 3, 0], [2, 4, 5, 3]]))
|
1034 |
-
|
1035 |
-
# TODO(b/175369555): Remove that code and its test.
|
1036 |
-
@parameterized.named_parameters(("Bert", False), ("Sentencepiece", True))
|
1037 |
-
def test_check_no_assert(self, use_sp_model):
|
1038 |
-
"""Tests the self-check during export without assertions."""
|
1039 |
-
preprocess_export_path = self._do_export(["d", "ef", "abc", "xy"],
|
1040 |
-
do_lower_case=True,
|
1041 |
-
use_sp_model=use_sp_model,
|
1042 |
-
tokenize_with_offsets=False,
|
1043 |
-
experimental_disable_assert=False)
|
1044 |
-
with self.assertRaisesRegex(AssertionError,
|
1045 |
-
r"failed to suppress \d+ Assert ops"):
|
1046 |
-
export_tfhub_lib._check_no_assert(preprocess_export_path)
|
1047 |
-
|
1048 |
-
|
1049 |
-
def _result_shapes_in_tf_function(fn, *args, **kwargs):
|
1050 |
-
"""Returns shapes (as lists) observed on the result of `fn`.
|
1051 |
-
|
1052 |
-
Args:
|
1053 |
-
fn: A callable.
|
1054 |
-
*args: TensorSpecs for Tensor-valued arguments and actual values for
|
1055 |
-
Python-valued arguments to fn.
|
1056 |
-
**kwargs: Same for keyword arguments.
|
1057 |
-
|
1058 |
-
Returns:
|
1059 |
-
The nest of partial tensor shapes (as lists) that is statically known inside
|
1060 |
-
tf.function(fn)(*args, **kwargs) for the nest of its results.
|
1061 |
-
"""
|
1062 |
-
# Use a captured mutable container for a side outout from the wrapper.
|
1063 |
-
uninitialized = "uninitialized!"
|
1064 |
-
result_shapes_container = [uninitialized]
|
1065 |
-
assert result_shapes_container[0] is uninitialized
|
1066 |
-
|
1067 |
-
@tf.function
|
1068 |
-
def shape_reporting_wrapper(*args, **kwargs):
|
1069 |
-
result = fn(*args, **kwargs)
|
1070 |
-
result_shapes_container[0] = tf.nest.map_structure(
|
1071 |
-
lambda x: x.shape.as_list(), result)
|
1072 |
-
return result
|
1073 |
-
|
1074 |
-
shape_reporting_wrapper.get_concrete_function(*args, **kwargs)
|
1075 |
-
assert result_shapes_container[0] is not uninitialized
|
1076 |
-
return result_shapes_container[0]
|
1077 |
-
|
1078 |
-
|
1079 |
-
if __name__ == "__main__":
|
1080 |
-
tf.test.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|