Spaces:
Running
Running
Pradeep Kumar
commited on
Commit
•
fba8174
1
Parent(s):
951f133
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,14 @@ from tensorflow.keras.models import load_model
|
|
7 |
from official.nlp.data import classifier_data_lib
|
8 |
from official.nlp.tools import tokenization
|
9 |
import joblib
|
|
|
|
|
10 |
|
11 |
model = load_model('best_model.h5', custom_objects={'KerasLayer': hub.KerasLayer})
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
vocab_file = model.resolved_object.vocab_file.asset_path.numpy()
|
15 |
do_lower_case = model.resolved_object.do_lower_case.numpy()
|
@@ -53,4 +58,37 @@ def preprocess_new_data(texts):
|
|
53 |
dataset = dataset.batch(32, drop_remainder=False)
|
54 |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
|
55 |
|
56 |
-
return dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from official.nlp.data import classifier_data_lib
|
8 |
from official.nlp.tools import tokenization
|
9 |
import joblib
|
10 |
+
import zipfile
|
11 |
+
import gradio as gr
|
12 |
|
13 |
model = load_model('best_model.h5', custom_objects={'KerasLayer': hub.KerasLayer})
|
14 |
|
15 |
+
with zipfile.ZipFile('model.zip', 'r') as zip_ref:
|
16 |
+
zip_ref.extractall('model')
|
17 |
+
|
18 |
|
19 |
vocab_file = model.resolved_object.vocab_file.asset_path.numpy()
|
20 |
do_lower_case = model.resolved_object.do_lower_case.numpy()
|
|
|
58 |
dataset = dataset.batch(32, drop_remainder=False)
|
59 |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
|
60 |
|
61 |
+
return dataset
|
62 |
+
def launch(input):
|
63 |
+
# Load the label encoder
|
64 |
+
label_encoder = joblib.load('label_encoder.joblib')
|
65 |
+
|
66 |
+
# Preprocess the new data
|
67 |
+
sample_example = [input]
|
68 |
+
new_data_dataset = preprocess_new_data(sample_example)
|
69 |
+
|
70 |
+
# Assuming you have a model already loaded (add model loading code if needed)
|
71 |
+
# Make predictions on the new data
|
72 |
+
predictions = model.predict(new_data_dataset)
|
73 |
+
|
74 |
+
# Decode the predictions
|
75 |
+
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions]
|
76 |
+
|
77 |
+
# Print the predicted classes
|
78 |
+
print(predicted_classes)
|
79 |
+
|
80 |
+
# Calculate the highest probabilities
|
81 |
+
highest_probabilities = [max(instance) for instance in predictions]
|
82 |
+
|
83 |
+
# Decode labels using the label encoder
|
84 |
+
decoded_labels = label_encoder.inverse_transform(predicted_classes)
|
85 |
+
|
86 |
+
print("Most likely ISCO code is {} and probability is {}".format(decoded_labels,highest_probabilities))
|
87 |
+
|
88 |
+
# Gradio Interface
|
89 |
+
iface = gr.Interface(fn=launch,
|
90 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter job title and description here..."),
|
91 |
+
outputs="text")
|
92 |
+
|
93 |
+
# Launch the Gradio app
|
94 |
+
iface.launch()
|