# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loads dataset for the tagging (e.g., NER/POS) task.""" import dataclasses from typing import Mapping, Optional import tensorflow as tf, tf_keras from official.common import dataset_fn from official.core import config_definitions as cfg from official.core import input_reader from official.nlp.data import data_loader from official.nlp.data import data_loader_factory @dataclasses.dataclass class TaggingDataConfig(cfg.DataConfig): """Data config for tagging (tasks/tagging).""" is_training: bool = True seq_length: int = 128 include_sentence_id: bool = False file_type: str = 'tfrecord' @data_loader_factory.register_data_loader_cls(TaggingDataConfig) class TaggingDataLoader(data_loader.DataLoader): """A class to load dataset for tagging (e.g., NER and POS) task.""" def __init__(self, params: TaggingDataConfig): self._params = params self._seq_length = params.seq_length self._include_sentence_id = params.include_sentence_id def _decode(self, record: tf.Tensor): """Decodes a serialized tf.Example.""" name_to_features = { 'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), 'label_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64), } if self._include_sentence_id: name_to_features['sentence_id'] = tf.io.FixedLenFeature([], tf.int64) name_to_features['sub_sentence_id'] = tf.io.FixedLenFeature([], tf.int64) example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in example: t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example def _parse(self, record: Mapping[str, tf.Tensor]): """Parses raw tensors into a dict of tensors to be consumed by the model.""" x = { 'input_word_ids': record['input_ids'], 'input_mask': record['input_mask'], 'input_type_ids': record['segment_ids'] } if self._include_sentence_id: x['sentence_id'] = record['sentence_id'] x['sub_sentence_id'] = record['sub_sentence_id'] y = record['label_ids'] return (x, y) def load(self, input_context: Optional[tf.distribute.InputContext] = None): """Returns a tf.dataset.Dataset.""" reader = input_reader.InputReader( params=self._params, dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type), decoder_fn=self._decode, parser_fn=self._parse) return reader.read(input_context)