import zipfile import sys import os with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: extract_path = 'models' zip_ref.extractall(extract_path) print(f"Extracted contents to {os.path.abspath(extract_path)}") sys.path.append('/home/user/app/models.zip') print(sys.path) # Check current directory and list files print("Current Directory:", os.getcwd()) print("Files in Directory:", os.listdir()) import numpy as np import tensorflow as tf import tensorflow_hub as hub import tf_keras as keras import pandas as pd from tensorflow.keras.models import load_model from official.nlp.data import classifier_data_lib from official.nlp.tools import tokenization import joblib import gradio as gr model = load_model('best_model.h5', custom_objects={'KerasLayer': hub.KerasLayer}) vocab_file = model.resolved_object.vocab_file.asset_path.numpy() do_lower_case = model.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case) # Parameters max_seq_length = 128 label_list = 424 dummy_label = 100 # Define a function to preprocess the new data def get_feature_new(text, max_seq_length, tokenizer, dummy_label): example = classifier_data_lib.InputExample(guid=None, text_a=text.numpy().decode('utf-8'), text_b=None, label=dummy_label) # Use a valid dummy label feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer) return feature.input_ids, feature.input_mask, feature.segment_ids def get_feature_map_new(text): input_ids, input_mask, segment_ids = tf.py_function( lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label), inp=[text], Tout=[tf.int32, tf.int32, tf.int32] ) input_ids.set_shape([max_seq_length]) input_mask.set_shape([max_seq_length]) segment_ids.set_shape([max_seq_length]) x = {'input_word_ids': input_ids, 'input_mask': input_mask, 'input_type_ids': segment_ids} return x def preprocess_new_data(texts): dataset = tf.data.Dataset.from_tensor_slices((texts,)) dataset = dataset.map(get_feature_map_new, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.batch(32, drop_remainder=False) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) return dataset def launch(input): # Load the label encoder label_encoder = joblib.load('label_encoder.joblib') # Preprocess the new data sample_example = [input] new_data_dataset = preprocess_new_data(sample_example) # Assuming you have a model already loaded (add model loading code if needed) # Make predictions on the new data predictions = model.predict(new_data_dataset) # Decode the predictions predicted_classes = [label_list[np.argmax(pred)] for pred in predictions] # Print the predicted classes print(predicted_classes) # Calculate the highest probabilities highest_probabilities = [max(instance) for instance in predictions] # Decode labels using the label encoder decoded_labels = label_encoder.inverse_transform(predicted_classes) print("Most likely ISCO code is {} and probability is {}".format(decoded_labels,highest_probabilities)) # Gradio Interface iface = gr.Interface(fn=launch, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter job title and description here..."), outputs="text") # Launch the Gradio app iface.launch()