# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loads dataset for the dual encoder (retrieval) task.""" import dataclasses import functools import itertools from typing import Iterable, Mapping, Optional, Tuple import tensorflow as tf, tf_keras import tensorflow_hub as hub from official.common import dataset_fn from official.core import config_definitions as cfg from official.core import input_reader from official.nlp.data import data_loader from official.nlp.data import data_loader_factory from official.nlp.modeling import layers @dataclasses.dataclass class DualEncoderDataConfig(cfg.DataConfig): """Data config for dual encoder task (tasks/dual_encoder).""" # Either set `input_path`... input_path: str = '' # ...or `tfds_name` and `tfds_split` to specify input. tfds_name: str = '' tfds_split: str = '' global_batch_size: int = 32 # Either build preprocessing with Python code by specifying these values... vocab_file: str = '' lower_case: bool = True # ...or load preprocessing from a SavedModel at this location. preprocessing_hub_module_url: str = '' left_text_fields: Tuple[str] = ('left_input',) right_text_fields: Tuple[str] = ('right_input',) is_training: bool = True seq_length: int = 128 file_type: str = 'tfrecord' @data_loader_factory.register_data_loader_cls(DualEncoderDataConfig) class DualEncoderDataLoader(data_loader.DataLoader): """A class to load dataset for dual encoder task (tasks/dual_encoder).""" def __init__(self, params): if bool(params.tfds_name) == bool(params.input_path): raise ValueError('Must specify either `tfds_name` and `tfds_split` ' 'or `input_path`.') if bool(params.vocab_file) == bool(params.preprocessing_hub_module_url): raise ValueError('Must specify exactly one of vocab_file (with matching ' 'lower_case flag) or preprocessing_hub_module_url.') self._params = params self._seq_length = params.seq_length self._left_text_fields = params.left_text_fields self._right_text_fields = params.right_text_fields if params.preprocessing_hub_module_url: preprocessing_hub_module = hub.load(params.preprocessing_hub_module_url) self._tokenizer = preprocessing_hub_module.tokenize self._pack_inputs = functools.partial( preprocessing_hub_module.bert_pack_inputs, seq_length=params.seq_length) else: self._tokenizer = layers.BertTokenizer( vocab_file=params.vocab_file, lower_case=params.lower_case) self._pack_inputs = layers.BertPackInputs( seq_length=params.seq_length, special_tokens_dict=self._tokenizer.get_special_tokens_dict()) def _decode(self, record: tf.Tensor): """Decodes a serialized tf.Example.""" name_to_features = { x: tf.io.FixedLenFeature([], tf.string) for x in itertools.chain( *[self._left_text_fields, self._right_text_fields]) } example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in example: t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example def _bert_tokenize( self, record: Mapping[str, tf.Tensor], text_fields: Iterable[str]) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """Tokenize the input in text_fields using BERT tokenizer. Args: record: A tfexample record contains the features. text_fields: A list of fields to be tokenzied. Returns: The tokenized features in a tuple of (input_word_ids, input_mask, input_type_ids). """ segments_text = [record[x] for x in text_fields] segments_tokens = [self._tokenizer(s) for s in segments_text] segments = [tf.cast(x.merge_dims(1, 2), tf.int32) for x in segments_tokens] return self._pack_inputs(segments) def _bert_preprocess( self, record: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]: """Perform the bert word piece tokenization for left and right inputs.""" def _switch_prefix(string, old, new): if string.startswith(old): return new + string[len(old):] raise ValueError('Expected {} to start with {}'.format(string, old)) def _switch_key_prefix(d, old, new): return {_switch_prefix(key, old, new): value for key, value in d.items()} # pytype: disable=attribute-error # trace-all-classes model_inputs = _switch_key_prefix( self._bert_tokenize(record, self._left_text_fields), 'input_', 'left_') model_inputs.update(_switch_key_prefix( self._bert_tokenize(record, self._right_text_fields), 'input_', 'right_')) return model_inputs def load(self, input_context: Optional[tf.distribute.InputContext] = None): """Returns a tf.dataset.Dataset.""" reader = input_reader.InputReader( params=self._params, # Skip `decoder_fn` for tfds input. decoder_fn=self._decode if self._params.input_path else None, dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type), postprocess_fn=self._bert_preprocess) return reader.read(input_context)