# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for official.nlp.data.dual_encoder_dataloader.""" import os from absl.testing import parameterized import tensorflow as tf, tf_keras from official.nlp.data import dual_encoder_dataloader _LEFT_FEATURE_NAME = 'left_input' _RIGHT_FEATURE_NAME = 'right_input' def _create_fake_dataset(output_path): """Creates a fake dataset contains examples for training a dual encoder model. The created dataset contains examples with two byteslist features keyed by _LEFT_FEATURE_NAME and _RIGHT_FEATURE_NAME. Args: output_path: The output path of the fake dataset. """ def create_str_feature(values): return tf.train.Feature(bytes_list=tf.train.BytesList(value=values)) with tf.io.TFRecordWriter(output_path) as writer: for _ in range(100): features = {} features[_LEFT_FEATURE_NAME] = create_str_feature([b'hello world.']) features[_RIGHT_FEATURE_NAME] = create_str_feature([b'world hello.']) tf_example = tf.train.Example( features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) def _make_vocab_file(vocab, output_path): with tf.io.gfile.GFile(output_path, 'w') as f: f.write('\n'.join(vocab + [''])) class DualEncoderDataTest(tf.test.TestCase, parameterized.TestCase): def test_load_dataset(self): seq_length = 16 batch_size = 10 train_data_path = os.path.join(self.get_temp_dir(), 'train.tf_record') vocab_path = os.path.join(self.get_temp_dir(), 'vocab.txt') _create_fake_dataset(train_data_path) _make_vocab_file( ['[PAD]', '[UNK]', '[CLS]', '[SEP]', 'he', '#llo', 'world'], vocab_path) data_config = dual_encoder_dataloader.DualEncoderDataConfig( input_path=train_data_path, seq_length=seq_length, vocab_file=vocab_path, lower_case=True, left_text_fields=(_LEFT_FEATURE_NAME,), right_text_fields=(_RIGHT_FEATURE_NAME,), global_batch_size=batch_size) dataset = dual_encoder_dataloader.DualEncoderDataLoader( data_config).load() features = next(iter(dataset)) self.assertCountEqual( ['left_word_ids', 'left_mask', 'left_type_ids', 'right_word_ids', 'right_mask', 'right_type_ids'], features.keys()) self.assertEqual(features['left_word_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['left_mask'].shape, (batch_size, seq_length)) self.assertEqual(features['left_type_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['right_word_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['right_mask'].shape, (batch_size, seq_length)) self.assertEqual(features['right_type_ids'].shape, (batch_size, seq_length)) @parameterized.parameters(False, True) def test_load_tfds(self, use_preprocessing_hub): seq_length = 16 batch_size = 10 if use_preprocessing_hub: vocab_path = '' preprocessing_hub = ( 'https://tfhub.dev/tensorflow/bert_multi_cased_preprocess/3') else: vocab_path = os.path.join(self.get_temp_dir(), 'vocab.txt') _make_vocab_file( ['[PAD]', '[UNK]', '[CLS]', '[SEP]', 'he', '#llo', 'world'], vocab_path) preprocessing_hub = '' data_config = dual_encoder_dataloader.DualEncoderDataConfig( tfds_name='para_crawl/enmt', tfds_split='train', seq_length=seq_length, vocab_file=vocab_path, lower_case=True, left_text_fields=('en',), right_text_fields=('mt',), preprocessing_hub_module_url=preprocessing_hub, global_batch_size=batch_size) dataset = dual_encoder_dataloader.DualEncoderDataLoader( data_config).load() features = next(iter(dataset)) self.assertCountEqual( ['left_word_ids', 'left_mask', 'left_type_ids', 'right_word_ids', 'right_mask', 'right_type_ids'], features.keys()) self.assertEqual(features['left_word_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['left_mask'].shape, (batch_size, seq_length)) self.assertEqual(features['left_type_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['right_word_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['right_mask'].shape, (batch_size, seq_length)) self.assertEqual(features['right_type_ids'].shape, (batch_size, seq_length)) if __name__ == '__main__': tf.test.main()