# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for nlp.data.pretrain_dynamic_dataloader.""" import os from absl import logging from absl.testing import parameterized import numpy as np import orbit import tensorflow as tf, tf_keras from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from official.nlp.configs import bert from official.nlp.configs import encoders from official.nlp.data import pretrain_dataloader from official.nlp.data import pretrain_dynamic_dataloader from official.nlp.tasks import masked_lm def _create_fake_dataset(output_path, seq_length, num_masked_tokens, max_seq_length, num_examples): """Creates a fake dataset.""" writer = tf.io.TFRecordWriter(output_path) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f def create_float_feature(values): f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) return f rng = np.random.default_rng(37) for _ in range(num_examples): features = {} padding = np.zeros(shape=(max_seq_length - seq_length), dtype=np.int32) input_ids = rng.integers(low=1, high=100, size=(seq_length)) features['input_ids'] = create_int_feature( np.concatenate((input_ids, padding))) features['input_mask'] = create_int_feature( np.concatenate((np.ones_like(input_ids), padding))) features['segment_ids'] = create_int_feature( np.concatenate((np.ones_like(input_ids), padding))) features['position_ids'] = create_int_feature( np.concatenate((np.ones_like(input_ids), padding))) features['masked_lm_positions'] = create_int_feature( rng.integers(60, size=(num_masked_tokens), dtype=np.int64)) features['masked_lm_ids'] = create_int_feature( rng.integers(100, size=(num_masked_tokens), dtype=np.int64)) features['masked_lm_weights'] = create_float_feature( np.ones((num_masked_tokens,), dtype=np.float32)) features['next_sentence_labels'] = create_int_feature(np.array([0])) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() class PretrainDynamicDataLoaderTest(tf.test.TestCase, parameterized.TestCase): @combinations.generate( combinations.combine( distribution_strategy=[ strategy_combinations.cloud_tpu_strategy, ], mode='eager')) def test_distribution_strategy(self, distribution_strategy): max_seq_length = 128 batch_size = 8 input_path = os.path.join(self.get_temp_dir(), 'train.tf_record') _create_fake_dataset( input_path, seq_length=60, num_masked_tokens=20, max_seq_length=max_seq_length, num_examples=batch_size) data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig( is_training=False, input_path=input_path, seq_bucket_lengths=[64, 128], global_batch_size=batch_size) dataloader = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader( data_config) distributed_ds = orbit.utils.make_distributed_dataset( distribution_strategy, dataloader.load) train_iter = iter(distributed_ds) with distribution_strategy.scope(): config = masked_lm.MaskedLMConfig( init_checkpoint=self.get_temp_dir(), model=bert.PretrainerConfig( encoders.EncoderConfig( bert=encoders.BertEncoderConfig( vocab_size=30522, num_layers=1)), cls_heads=[ bert.ClsHeadConfig( inner_dim=10, num_classes=2, name='next_sentence') ]), train_data=data_config) task = masked_lm.MaskedLMTask(config) model = task.build_model() metrics = task.build_metrics() @tf.function def step_fn(features): return task.validation_step(features, model, metrics=metrics) distributed_outputs = distribution_strategy.run( step_fn, args=(next(train_iter),)) local_results = tf.nest.map_structure( distribution_strategy.experimental_local_results, distributed_outputs) logging.info('Dynamic padding: local_results= %s', str(local_results)) dynamic_metrics = {} for metric in metrics: dynamic_metrics[metric.name] = metric.result() data_config = pretrain_dataloader.BertPretrainDataConfig( is_training=False, input_path=input_path, seq_length=max_seq_length, max_predictions_per_seq=20, global_batch_size=batch_size) dataloader = pretrain_dataloader.BertPretrainDataLoader(data_config) distributed_ds = orbit.utils.make_distributed_dataset( distribution_strategy, dataloader.load) train_iter = iter(distributed_ds) with distribution_strategy.scope(): metrics = task.build_metrics() @tf.function def step_fn_b(features): return task.validation_step(features, model, metrics=metrics) distributed_outputs = distribution_strategy.run( step_fn_b, args=(next(train_iter),)) local_results = tf.nest.map_structure( distribution_strategy.experimental_local_results, distributed_outputs) logging.info('Static padding: local_results= %s', str(local_results)) static_metrics = {} for metric in metrics: static_metrics[metric.name] = metric.result() for key in static_metrics: # We need to investigate the differences on losses. if key != 'next_sentence_loss': self.assertEqual(dynamic_metrics[key], static_metrics[key]) def test_load_dataset(self): tf.random.set_seed(0) max_seq_length = 128 batch_size = 2 input_path_1 = os.path.join(self.get_temp_dir(), 'train_1.tf_record') _create_fake_dataset( input_path_1, seq_length=60, num_masked_tokens=20, max_seq_length=max_seq_length, num_examples=batch_size) input_path_2 = os.path.join(self.get_temp_dir(), 'train_2.tf_record') _create_fake_dataset( input_path_2, seq_length=100, num_masked_tokens=70, max_seq_length=max_seq_length, num_examples=batch_size) input_paths = ','.join([input_path_1, input_path_2]) data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig( is_training=False, input_path=input_paths, seq_bucket_lengths=[64, 128], use_position_id=True, global_batch_size=batch_size, deterministic=True) dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader( data_config).load() dataset_it = iter(dataset) features = next(dataset_it) self.assertCountEqual([ 'input_word_ids', 'input_mask', 'input_type_ids', 'next_sentence_labels', 'masked_lm_positions', 'masked_lm_ids', 'masked_lm_weights', 'position_ids', ], features.keys()) # Sequence length dimension should be bucketized and pad to 64. self.assertEqual(features['input_word_ids'].shape, (batch_size, 64)) self.assertEqual(features['input_mask'].shape, (batch_size, 64)) self.assertEqual(features['input_type_ids'].shape, (batch_size, 64)) self.assertEqual(features['position_ids'].shape, (batch_size, 64)) self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 20)) features = next(dataset_it) self.assertEqual(features['input_word_ids'].shape, (batch_size, 128)) self.assertEqual(features['input_mask'].shape, (batch_size, 128)) self.assertEqual(features['input_type_ids'].shape, (batch_size, 128)) self.assertEqual(features['position_ids'].shape, (batch_size, 128)) self.assertEqual(features['masked_lm_positions'].shape, (batch_size, 70)) def test_load_dataset_not_same_masks(self): max_seq_length = 128 batch_size = 2 input_path_1 = os.path.join(self.get_temp_dir(), 'train_3.tf_record') _create_fake_dataset( input_path_1, seq_length=60, num_masked_tokens=20, max_seq_length=max_seq_length, num_examples=batch_size) input_path_2 = os.path.join(self.get_temp_dir(), 'train_4.tf_record') _create_fake_dataset( input_path_2, seq_length=60, num_masked_tokens=15, max_seq_length=max_seq_length, num_examples=batch_size) input_paths = ','.join([input_path_1, input_path_2]) data_config = pretrain_dynamic_dataloader.BertPretrainDataConfig( is_training=False, input_path=input_paths, seq_bucket_lengths=[64, 128], use_position_id=True, global_batch_size=batch_size * 2) dataset = pretrain_dynamic_dataloader.PretrainingDynamicDataLoader( data_config).load() dataset_it = iter(dataset) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, '.*Number of non padded mask tokens.*'): next(dataset_it) if __name__ == '__main__': tf.test.main()