# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for official.nlp.data.question_answering_dataloader.""" import os import numpy as np import tensorflow as tf, tf_keras from official.nlp.data import question_answering_dataloader def _create_fake_dataset(output_path, seq_length): """Creates a fake dataset.""" writer = tf.io.TFRecordWriter(output_path) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f for _ in range(100): features = {} input_ids = np.random.randint(100, size=(seq_length)) features['input_ids'] = create_int_feature(input_ids) features['input_mask'] = create_int_feature(np.ones_like(input_ids)) features['segment_ids'] = create_int_feature(np.ones_like(input_ids)) features['start_positions'] = create_int_feature(np.array([0])) features['end_positions'] = create_int_feature(np.array([10])) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() class QuestionAnsweringDataTest(tf.test.TestCase): def test_load_dataset(self): seq_length = 128 batch_size = 10 input_path = os.path.join(self.get_temp_dir(), 'train.tf_record') _create_fake_dataset(input_path, seq_length) data_config = question_answering_dataloader.QADataConfig( is_training=True, input_path=input_path, seq_length=seq_length, global_batch_size=batch_size) dataset = question_answering_dataloader.QuestionAnsweringDataLoader( data_config).load() features, labels = next(iter(dataset)) self.assertCountEqual(['input_word_ids', 'input_mask', 'input_type_ids'], features.keys()) self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) self.assertCountEqual(['start_positions', 'end_positions'], labels.keys()) self.assertEqual(labels['start_positions'].shape, (batch_size,)) self.assertEqual(labels['end_positions'].shape, (batch_size,)) if __name__ == '__main__': tf.test.main()