# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for official.nlp.data.wmt_dataloader.""" import os from absl.testing import parameterized import tensorflow as tf, tf_keras from sentencepiece import SentencePieceTrainer from official.nlp.data import wmt_dataloader def _generate_line_file(filepath, lines): with tf.io.gfile.GFile(filepath, 'w') as f: for l in lines: f.write('{}\n'.format(l)) def _generate_record_file(filepath, src_lines, tgt_lines, unique_id=False): writer = tf.io.TFRecordWriter(filepath) for i, (src, tgt) in enumerate(zip(src_lines, tgt_lines)): features = { 'en': tf.train.Feature( bytes_list=tf.train.BytesList( value=[src.encode()])), 'reverse_en': tf.train.Feature( bytes_list=tf.train.BytesList( value=[tgt.encode()])), } if unique_id: features['unique_id'] = tf.train.Feature( int64_list=tf.train.Int64List(value=[i])) example = tf.train.Example( features=tf.train.Features( feature=features)) writer.write(example.SerializeToString()) writer.close() def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1): argstr = ' '.join([ f'--input={input_path}', f'--vocab_size={vocab_size}', '--character_coverage=0.995', f'--model_prefix={model_path}', '--model_type=bpe', '--bos_id=-1', '--pad_id=0', f'--eos_id={eos_id}', '--unk_id=2' ]) SentencePieceTrainer.Train(argstr) class WMTDataLoaderTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(WMTDataLoaderTest, self).setUp() self._temp_dir = self.get_temp_dir() src_lines = [ 'abc ede fg', 'bbcd ef a g', 'de f a a g' ] tgt_lines = [ 'dd cc a ef g', 'bcd ef a g', 'gef cd ba' ] self._record_train_input_path = os.path.join(self._temp_dir, 'train.record') _generate_record_file(self._record_train_input_path, src_lines, tgt_lines) self._record_test_input_path = os.path.join(self._temp_dir, 'test.record') _generate_record_file(self._record_test_input_path, src_lines, tgt_lines, unique_id=True) self._sentencepeice_input_path = os.path.join(self._temp_dir, 'inputs.txt') _generate_line_file(self._sentencepeice_input_path, src_lines + tgt_lines) sentencepeice_model_prefix = os.path.join(self._temp_dir, 'sp') _train_sentencepiece(self._sentencepeice_input_path, 20, sentencepeice_model_prefix) self._sentencepeice_model_path = '{}.model'.format( sentencepeice_model_prefix) @parameterized.named_parameters( ('train_static', True, True, 100, (2, 35)), ('train_non_static', True, False, 100, (12, 7)), ('non_train_static', False, True, 3, (3, 35)), ('non_train_non_static', False, False, 50, (2, 7)),) def test_load_dataset( self, is_training, static_batch, batch_size, expected_shape): data_config = wmt_dataloader.WMTDataConfig( input_path=self._record_train_input_path if is_training else self._record_test_input_path, max_seq_length=35, global_batch_size=batch_size, is_training=is_training, static_batch=static_batch, src_lang='en', tgt_lang='reverse_en', sentencepiece_model_path=self._sentencepeice_model_path) dataset = wmt_dataloader.WMTDataLoader(data_config).load() examples = next(iter(dataset)) inputs, targets = examples['inputs'], examples['targets'] self.assertEqual(inputs.shape, expected_shape) self.assertEqual(targets.shape, expected_shape) def test_load_dataset_raise_invalid_window(self): batch_tokens_size = 10 # this is too small to form buckets. data_config = wmt_dataloader.WMTDataConfig( input_path=self._record_train_input_path, max_seq_length=100, global_batch_size=batch_tokens_size, is_training=True, static_batch=False, src_lang='en', tgt_lang='reverse_en', sentencepiece_model_path=self._sentencepeice_model_path) with self.assertRaisesRegex( ValueError, 'The token budget, global batch size, is too small.*'): _ = wmt_dataloader.WMTDataLoader(data_config).load() if __name__ == '__main__': tf.test.main()