File size: 2,290 Bytes
7001f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
3e166ec
7001f7d
3e166ec
7001f7d
 
3e166ec
7001f7d
 
 
 
3e166ec
 
 
 
 
 
 
7001f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e166ec
7001f7d
 
3e166ec
7001f7d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import gradio as gr
import numpy as np

# Set device to GPU if available, else CPU
device = "cuda:0" if torch.cuda.is_available() else "cpu"

# Load the TTS model and tokenizers
model = ParlerTTSForConditionalGeneration.from_pretrained("ai4bharat/indic-parler-tts").to(device)
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)

def generate_audio(text: str):
    """
    Generate synthesized speech audio based on the input text.
    
    Args:
        text (str): The text prompt to be spoken.
    
    Returns:
        tuple: A tuple containing the audio numpy array and the sampling rate.
    """
    # Set a default voice description
    default_description = ("Divya's voice is monotone yet slightly fast in delivery, with a very close recording "
                           "that almost has no background noise.")
    
    # Tokenize the default description and the input text
    description_tokens = description_tokenizer(default_description, return_tensors="pt").to(device)
    prompt_tokens = tokenizer(text, return_tensors="pt").to(device)
    
    # Generate the audio tensor using the model
    generation = model.generate(
        input_ids=description_tokens.input_ids, 
        attention_mask=description_tokens.attention_mask, 
        prompt_input_ids=prompt_tokens.input_ids, 
        prompt_attention_mask=prompt_tokens.attention_mask
    )
    
    # Convert the generated tensor to a numpy array and remove extra dimensions
    audio_arr = generation.cpu().numpy().squeeze()
    
    # Retrieve the sampling rate from the model config
    sampling_rate = model.config.sampling_rate
    return (audio_arr, sampling_rate)

# Build the Gradio interface with a single text input
iface = gr.Interface(
    fn=generate_audio,
    inputs=gr.Textbox(label="Enter Text", value="เค…เคฐเฅ‡, เคคเฅเคฎ เค†เคœ เค•เฅˆเคธเฅ‡ เคนเฅ‹?"),
    outputs=gr.Audio(label="Generated Audio"),
    title="Indic Parler TTS",
    description="Generate synthesized speech using the Indic Parler TTS model from ai4bharat."
)

if __name__ == "__main__":
    iface.launch()