Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,38 @@ from parler_tts import ParlerTTSForConditionalGeneration
|
|
3 |
from transformers import AutoTokenizer
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
|
|
|
|
6 |
|
7 |
# Set device to GPU if available, else CPU
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def generate_audio(text: str):
|
16 |
"""
|
@@ -23,8 +47,10 @@ def generate_audio(text: str):
|
|
23 |
tuple: A tuple containing the audio numpy array and the sampling rate.
|
24 |
"""
|
25 |
# Set a default voice description
|
26 |
-
default_description = (
|
27 |
-
|
|
|
|
|
28 |
|
29 |
# Tokenize the default description and the input text
|
30 |
description_tokens = description_tokenizer(default_description, return_tensors="pt").to(device)
|
|
|
3 |
from transformers import AutoTokenizer
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
import time
|
7 |
+
import requests
|
8 |
|
9 |
# Set device to GPU if available, else CPU
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Function to load the model with retry logic and increased timeout
|
13 |
+
def load_model_with_retry(model_id, retries=3, timeout=60):
|
14 |
+
for attempt in range(1, retries + 1):
|
15 |
+
try:
|
16 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(model_id, timeout=timeout).to(device)
|
17 |
+
return model
|
18 |
+
except requests.exceptions.ReadTimeout:
|
19 |
+
print(f"Timeout when loading model. Attempt {attempt} of {retries}. Retrying in 5 seconds...")
|
20 |
+
time.sleep(5)
|
21 |
+
raise Exception("Failed to load model after multiple retries.")
|
22 |
+
|
23 |
+
# Function to load a tokenizer with retry logic and increased timeout
|
24 |
+
def load_tokenizer_with_retry(tokenizer_id, retries=3, timeout=60):
|
25 |
+
for attempt in range(1, retries + 1):
|
26 |
+
try:
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, timeout=timeout)
|
28 |
+
return tokenizer
|
29 |
+
except requests.exceptions.ReadTimeout:
|
30 |
+
print(f"Timeout when loading tokenizer. Attempt {attempt} of {retries}. Retrying in 5 seconds...")
|
31 |
+
time.sleep(5)
|
32 |
+
raise Exception("Failed to load tokenizer after multiple retries.")
|
33 |
+
|
34 |
+
# Load the TTS model and tokenizers using the retry functions
|
35 |
+
model = load_model_with_retry("ai4bharat/indic-parler-tts")
|
36 |
+
tokenizer = load_tokenizer_with_retry("ai4bharat/indic-parler-tts")
|
37 |
+
description_tokenizer = load_tokenizer_with_retry(model.config.text_encoder._name_or_path)
|
38 |
|
39 |
def generate_audio(text: str):
|
40 |
"""
|
|
|
47 |
tuple: A tuple containing the audio numpy array and the sampling rate.
|
48 |
"""
|
49 |
# Set a default voice description
|
50 |
+
default_description = (
|
51 |
+
"Divya's voice is monotone yet slightly fast in delivery, with a very close recording "
|
52 |
+
"that almost has no background noise."
|
53 |
+
)
|
54 |
|
55 |
# Tokenize the default description and the input text
|
56 |
description_tokens = description_tokenizer(default_description, return_tensors="pt").to(device)
|