Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,52 @@
|
|
1 |
import gradio as gr
|
2 |
from gtts import gTTS
|
3 |
-
import time
|
4 |
-
import difflib
|
5 |
import tempfile
|
6 |
import os
|
7 |
-
import
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Function to play the text (optional)
|
11 |
def play_text(text):
|
12 |
tts = gTTS(text=text, lang='hi', slow=False)
|
13 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
14 |
tts.save(temp_file.name)
|
15 |
-
|
|
|
16 |
return "✅ Text is being read out. Please listen and read it yourself."
|
17 |
|
18 |
-
|
19 |
-
model = WhisperModel("small", compute_type="float32") # Or "medium" for better accuracy
|
20 |
-
|
21 |
-
def transcribe_audio(audio, original_text):
|
22 |
try:
|
23 |
-
#
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
-
import re
|
30 |
original_words = re.findall(r'\w+', original_text.strip())
|
31 |
transcribed_words = re.findall(r'\w+', transcription.strip())
|
32 |
-
|
33 |
matcher = difflib.SequenceMatcher(None, original_words, transcribed_words)
|
34 |
accuracy = round(matcher.ratio() * 100, 2)
|
35 |
|
36 |
-
# Speaking speed (
|
37 |
-
|
|
|
38 |
|
39 |
result = {
|
40 |
"📝 Transcribed Text": transcription,
|
@@ -45,11 +57,9 @@ def transcribe_audio(audio, original_text):
|
|
45 |
except Exception as e:
|
46 |
return {"error": str(e)}
|
47 |
|
48 |
-
|
49 |
-
# Gradio App
|
50 |
with gr.Blocks() as app:
|
51 |
-
gr.Markdown("## 🗣️ Hindi Reading & Pronunciation Practice App")
|
52 |
-
|
53 |
with gr.Row():
|
54 |
input_text = gr.Textbox(label="Paste Hindi Text Here", placeholder="यहाँ हिंदी टेक्स्ट लिखें...")
|
55 |
play_button = gr.Button("🔊 Listen to Text")
|
@@ -58,14 +68,10 @@ with gr.Blocks() as app:
|
|
58 |
|
59 |
gr.Markdown("### 🎤 Now upload or record yourself reading the text aloud below:")
|
60 |
audio_input = gr.Audio(type="filepath", label="Upload or Record Your Voice")
|
61 |
-
|
62 |
submit_button = gr.Button("✅ Submit Recording for Checking")
|
63 |
-
|
64 |
output = gr.JSON(label="Results")
|
65 |
-
|
66 |
submit_button.click(transcribe_audio, inputs=[audio_input, input_text], outputs=[output])
|
67 |
|
68 |
-
# Launch the app
|
69 |
app.launch()
|
70 |
-
|
71 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from gtts import gTTS
|
|
|
|
|
3 |
import tempfile
|
4 |
import os
|
5 |
+
import difflib
|
6 |
+
import torch
|
7 |
+
import re
|
8 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
9 |
+
import torchaudio
|
10 |
+
|
11 |
+
# Load AI4Bharat Hindi model & processor
|
12 |
+
MODEL_NAME = "ai4bharat/indicwav2vec-hindi"
|
13 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
14 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
|
15 |
|
|
|
16 |
def play_text(text):
|
17 |
tts = gTTS(text=text, lang='hi', slow=False)
|
18 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
19 |
tts.save(temp_file.name)
|
20 |
+
# Windows: "start", Mac: "afplay", Linux: "mpg123" (edit as needed)
|
21 |
+
os.system(f"start {temp_file.name}")
|
22 |
return "✅ Text is being read out. Please listen and read it yourself."
|
23 |
|
24 |
+
def transcribe_audio(audio_path, original_text):
|
|
|
|
|
|
|
25 |
try:
|
26 |
+
# 1. Load audio & convert to mono, 16kHz if needed
|
27 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
28 |
+
if waveform.shape[0] > 1:
|
29 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
30 |
+
if sample_rate != 16000:
|
31 |
+
transform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
32 |
+
waveform = transform(waveform)
|
33 |
+
input_values = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_values
|
34 |
|
35 |
+
# 2. Transcribe with AI4Bharat model
|
36 |
+
with torch.no_grad():
|
37 |
+
logits = model(input_values).logits
|
38 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
39 |
+
transcription = processor.decode(predicted_ids[0])
|
40 |
|
41 |
+
# 3. Calculate accuracy etc.
|
|
|
42 |
original_words = re.findall(r'\w+', original_text.strip())
|
43 |
transcribed_words = re.findall(r'\w+', transcription.strip())
|
|
|
44 |
matcher = difflib.SequenceMatcher(None, original_words, transcribed_words)
|
45 |
accuracy = round(matcher.ratio() * 100, 2)
|
46 |
|
47 |
+
# Speaking speed approximation (needs duration, which torchaudio gives)
|
48 |
+
duration = waveform.shape[1] / 16000
|
49 |
+
speed = round(len(transcribed_words) / duration, 2) if duration > 0 else 0
|
50 |
|
51 |
result = {
|
52 |
"📝 Transcribed Text": transcription,
|
|
|
57 |
except Exception as e:
|
58 |
return {"error": str(e)}
|
59 |
|
|
|
|
|
60 |
with gr.Blocks() as app:
|
61 |
+
gr.Markdown("## 🗣️ Hindi Reading & Pronunciation Practice App (AI4Bharat Model)")
|
62 |
+
|
63 |
with gr.Row():
|
64 |
input_text = gr.Textbox(label="Paste Hindi Text Here", placeholder="यहाँ हिंदी टेक्स्ट लिखें...")
|
65 |
play_button = gr.Button("🔊 Listen to Text")
|
|
|
68 |
|
69 |
gr.Markdown("### 🎤 Now upload or record yourself reading the text aloud below:")
|
70 |
audio_input = gr.Audio(type="filepath", label="Upload or Record Your Voice")
|
71 |
+
|
72 |
submit_button = gr.Button("✅ Submit Recording for Checking")
|
|
|
73 |
output = gr.JSON(label="Results")
|
74 |
+
|
75 |
submit_button.click(transcribe_audio, inputs=[audio_input, input_text], outputs=[output])
|
76 |
|
|
|
77 |
app.launch()
|
|
|
|