Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,24 @@ import torchvision.transforms as transforms
|
|
5 |
from torchvision import models
|
6 |
import torch.nn as nn
|
7 |
import torch.optim as optim
|
8 |
-
import numpy as np
|
9 |
from PIL import Image
|
10 |
-
|
11 |
# CIFAR-10 labels
|
12 |
cifar10_classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
13 |
'dog', 'frog', 'horse', 'ship', 'truck']
|
14 |
-
|
15 |
-
# Transforms
|
16 |
transform = transforms.Compose([
|
17 |
transforms.Resize((32, 32)),
|
18 |
transforms.ToTensor(),
|
19 |
-
transforms.Normalize((0.5,), (0.5,))
|
20 |
])
|
21 |
-
|
22 |
-
# Load CIFAR-10
|
23 |
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
24 |
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
25 |
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
26 |
-
|
27 |
def predict(model, image_tensor):
|
28 |
model.eval()
|
29 |
with torch.no_grad():
|
@@ -34,27 +33,45 @@ def predict(model, image_tensor):
|
|
34 |
probs = torch.zeros_like(probs)
|
35 |
pred = torch.argmax(probs).item()
|
36 |
return probs, pred
|
37 |
-
|
38 |
def unlearn(model, image_tensor, label_idx, learning_rate, steps=20):
|
|
|
|
|
|
|
|
|
39 |
model.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
for m in model.modules():
|
41 |
if isinstance(m, nn.BatchNorm2d):
|
42 |
m.eval()
|
43 |
-
|
44 |
criterion = nn.CrossEntropyLoss()
|
45 |
-
optimizer
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
for i in range(steps):
|
48 |
output = model(image_tensor.unsqueeze(0))
|
49 |
-
loss = -criterion(output,
|
50 |
if torch.isnan(loss):
|
51 |
print(f"β NaN detected in loss at step {i}. Stopping unlearning.")
|
52 |
break
|
53 |
print(f"π§ Step {i+1}/{steps} - Unlearning Loss: {loss.item():.4f}")
|
|
|
54 |
optimizer.zero_grad()
|
55 |
loss.backward()
|
|
|
|
|
56 |
optimizer.step()
|
57 |
-
|
58 |
def evaluate_model(model, testloader):
|
59 |
model.eval()
|
60 |
total, correct, loss_total = 0, 0, 0.0
|
@@ -68,70 +85,76 @@ def evaluate_model(model, testloader):
|
|
68 |
correct += (preds == labels).sum().item()
|
69 |
loss_total += loss.item() * labels.size(0)
|
70 |
return round(100 * correct / total, 2), round(loss_total / total, 4)
|
71 |
-
|
72 |
def run_unlearning(index_to_unlearn, learning_rate):
|
73 |
-
#
|
|
|
|
|
|
|
74 |
original_model = models.resnet18(weights=None)
|
75 |
original_model.fc = nn.Linear(original_model.fc.in_features, 10)
|
76 |
-
original_model.load_state_dict(torch.load("resnet18.pth"))
|
|
|
77 |
original_model.eval()
|
78 |
-
|
79 |
-
# Duplicate model for unlearning
|
80 |
unlearned_model = models.resnet18(weights=None)
|
81 |
unlearned_model.fc = nn.Linear(unlearned_model.fc.in_features, 10)
|
82 |
-
unlearned_model.load_state_dict(torch.load("resnet18.pth"))
|
83 |
-
|
84 |
-
|
|
|
85 |
image_tensor, label_idx = trainset[index_to_unlearn]
|
|
|
86 |
label_name = cifar10_classes[label_idx]
|
87 |
print(f"ποΈ Actual Label Index: {label_idx} | Label Name: {label_name}")
|
88 |
-
|
89 |
-
# Prediction before
|
90 |
probs_before, pred_before = predict(original_model, image_tensor)
|
91 |
conf_before = probs_before[label_idx].item()
|
92 |
-
|
93 |
-
#
|
94 |
unlearn(unlearned_model, image_tensor, label_idx, learning_rate)
|
95 |
-
|
96 |
-
# Prediction after
|
97 |
probs_after, pred_after = predict(unlearned_model, image_tensor)
|
98 |
conf_after = probs_after[label_idx].item()
|
99 |
-
|
100 |
-
# Evaluate full test set
|
101 |
orig_acc, orig_loss = evaluate_model(original_model, testloader)
|
102 |
unlearn_acc, unlearn_loss = evaluate_model(unlearned_model, testloader)
|
103 |
-
|
104 |
result = f"""
|
105 |
π Index Unlearned: {index_to_unlearn}
|
106 |
ποΈ Actual Label: {label_name} (Index: {label_idx})
|
107 |
-
|
108 |
π BEFORE Unlearning:
|
109 |
- Prediction: {cifar10_classes[pred_before]}
|
110 |
- Confidence: {conf_before:.4f}
|
111 |
-
|
112 |
π§½ AFTER Unlearning:
|
113 |
- Prediction: {cifar10_classes[pred_after]}
|
114 |
- Confidence: {conf_after:.4f}
|
115 |
-
|
116 |
π Confidence Drop: {conf_before - conf_after:.4f}
|
117 |
-
|
118 |
π§ͺ Test Set Performance:
|
119 |
-
- Original Model: {orig_acc:.2f}%
|
120 |
-
- Unlearned Model: {unlearn_acc:.2f}%
|
121 |
"""
|
122 |
return result
|
123 |
-
|
124 |
-
# Gradio Interface
|
125 |
demo = gr.Interface(
|
126 |
fn=run_unlearning,
|
127 |
inputs=[
|
128 |
-
gr.Slider(0, len(trainset)-1, step=1, label="Select Index to Unlearn"),
|
129 |
gr.Slider(0.0001, 0.01, step=0.0001, value=0.005, label="Learning Rate (for Unlearning)")
|
130 |
],
|
131 |
outputs="text",
|
132 |
title="π CIFAR-10 Machine Unlearning",
|
133 |
description="Load a pre-trained ResNet18 and unlearn a specific index from the CIFAR-10 training set."
|
134 |
)
|
135 |
-
|
136 |
if __name__ == "__main__":
|
137 |
-
demo.launch()
|
|
|
5 |
from torchvision import models
|
6 |
import torch.nn as nn
|
7 |
import torch.optim as optim
|
|
|
8 |
from PIL import Image
|
9 |
+
|
10 |
# CIFAR-10 labels
|
11 |
cifar10_classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
12 |
'dog', 'frog', 'horse', 'ship', 'truck']
|
13 |
+
|
14 |
+
# Transforms with proper normalization for 3 channels
|
15 |
transform = transforms.Compose([
|
16 |
transforms.Resize((32, 32)),
|
17 |
transforms.ToTensor(),
|
18 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
19 |
])
|
20 |
+
|
21 |
+
# Load CIFAR-10 datasets
|
22 |
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
23 |
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
24 |
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
25 |
+
|
26 |
def predict(model, image_tensor):
|
27 |
model.eval()
|
28 |
with torch.no_grad():
|
|
|
33 |
probs = torch.zeros_like(probs)
|
34 |
pred = torch.argmax(probs).item()
|
35 |
return probs, pred
|
36 |
+
|
37 |
def unlearn(model, image_tensor, label_idx, learning_rate, steps=20):
|
38 |
+
"""
|
39 |
+
Performs targeted unlearning by updating only the final fully connected layer
|
40 |
+
using negative cross-entropy loss.
|
41 |
+
"""
|
42 |
model.train()
|
43 |
+
# Freeze all layers except the final fully connected layer (fc)
|
44 |
+
for name, param in model.named_parameters():
|
45 |
+
if "fc" not in name:
|
46 |
+
param.requires_grad = False
|
47 |
+
|
48 |
+
# Set BatchNorm layers to eval mode to prevent updating running stats
|
49 |
for m in model.modules():
|
50 |
if isinstance(m, nn.BatchNorm2d):
|
51 |
m.eval()
|
52 |
+
|
53 |
criterion = nn.CrossEntropyLoss()
|
54 |
+
# Use Adam optimizer for parameters that require gradients (i.e. only the fc layer)
|
55 |
+
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate)
|
56 |
+
|
57 |
+
# Ensure label tensor is on the same device as the image_tensor
|
58 |
+
device = image_tensor.device
|
59 |
+
label_tensor = torch.tensor([label_idx], device=device)
|
60 |
+
|
61 |
for i in range(steps):
|
62 |
output = model(image_tensor.unsqueeze(0))
|
63 |
+
loss = -criterion(output, label_tensor) # Negative loss for unlearning
|
64 |
if torch.isnan(loss):
|
65 |
print(f"β NaN detected in loss at step {i}. Stopping unlearning.")
|
66 |
break
|
67 |
print(f"π§ Step {i+1}/{steps} - Unlearning Loss: {loss.item():.4f}")
|
68 |
+
|
69 |
optimizer.zero_grad()
|
70 |
loss.backward()
|
71 |
+
# Clip gradients to avoid explosion
|
72 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
73 |
optimizer.step()
|
74 |
+
|
75 |
def evaluate_model(model, testloader):
|
76 |
model.eval()
|
77 |
total, correct, loss_total = 0, 0, 0.0
|
|
|
85 |
correct += (preds == labels).sum().item()
|
86 |
loss_total += loss.item() * labels.size(0)
|
87 |
return round(100 * correct / total, 2), round(loss_total / total, 4)
|
88 |
+
|
89 |
def run_unlearning(index_to_unlearn, learning_rate):
|
90 |
+
# Set device (CPU in this example; update as needed)
|
91 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
+
|
93 |
+
# Load the original pre-trained model
|
94 |
original_model = models.resnet18(weights=None)
|
95 |
original_model.fc = nn.Linear(original_model.fc.in_features, 10)
|
96 |
+
original_model.load_state_dict(torch.load("resnet18.pth", map_location=device))
|
97 |
+
original_model.to(device)
|
98 |
original_model.eval()
|
99 |
+
|
100 |
+
# Duplicate the model for unlearning experiment
|
101 |
unlearned_model = models.resnet18(weights=None)
|
102 |
unlearned_model.fc = nn.Linear(unlearned_model.fc.in_features, 10)
|
103 |
+
unlearned_model.load_state_dict(torch.load("resnet18.pth", map_location=device))
|
104 |
+
unlearned_model.to(device)
|
105 |
+
|
106 |
+
# Get the sample to unlearn from the training set
|
107 |
image_tensor, label_idx = trainset[index_to_unlearn]
|
108 |
+
image_tensor = image_tensor.to(device)
|
109 |
label_name = cifar10_classes[label_idx]
|
110 |
print(f"ποΈ Actual Label Index: {label_idx} | Label Name: {label_name}")
|
111 |
+
|
112 |
+
# Prediction before unlearning
|
113 |
probs_before, pred_before = predict(original_model, image_tensor)
|
114 |
conf_before = probs_before[label_idx].item()
|
115 |
+
|
116 |
+
# Perform unlearning on the duplicated model
|
117 |
unlearn(unlearned_model, image_tensor, label_idx, learning_rate)
|
118 |
+
|
119 |
+
# Prediction after unlearning
|
120 |
probs_after, pred_after = predict(unlearned_model, image_tensor)
|
121 |
conf_after = probs_after[label_idx].item()
|
122 |
+
|
123 |
+
# Evaluate full test set performance on both models
|
124 |
orig_acc, orig_loss = evaluate_model(original_model, testloader)
|
125 |
unlearn_acc, unlearn_loss = evaluate_model(unlearned_model, testloader)
|
126 |
+
|
127 |
result = f"""
|
128 |
π Index Unlearned: {index_to_unlearn}
|
129 |
ποΈ Actual Label: {label_name} (Index: {label_idx})
|
130 |
+
|
131 |
π BEFORE Unlearning:
|
132 |
- Prediction: {cifar10_classes[pred_before]}
|
133 |
- Confidence: {conf_before:.4f}
|
134 |
+
|
135 |
π§½ AFTER Unlearning:
|
136 |
- Prediction: {cifar10_classes[pred_after]}
|
137 |
- Confidence: {conf_after:.4f}
|
138 |
+
|
139 |
π Confidence Drop: {conf_before - conf_after:.4f}
|
140 |
+
|
141 |
π§ͺ Test Set Performance:
|
142 |
+
- Original Model: {orig_acc:.2f}% accuracy, Loss: {orig_loss:.4f}
|
143 |
+
- Unlearned Model: {unlearn_acc:.2f}% accuracy, Loss: {unlearn_loss:.4f}
|
144 |
"""
|
145 |
return result
|
146 |
+
|
147 |
+
# Gradio Interface for interactive unlearning demonstration
|
148 |
demo = gr.Interface(
|
149 |
fn=run_unlearning,
|
150 |
inputs=[
|
151 |
+
gr.Slider(0, len(trainset) - 1, step=1, label="Select Index to Unlearn"),
|
152 |
gr.Slider(0.0001, 0.01, step=0.0001, value=0.005, label="Learning Rate (for Unlearning)")
|
153 |
],
|
154 |
outputs="text",
|
155 |
title="π CIFAR-10 Machine Unlearning",
|
156 |
description="Load a pre-trained ResNet18 and unlearn a specific index from the CIFAR-10 training set."
|
157 |
)
|
158 |
+
|
159 |
if __name__ == "__main__":
|
160 |
+
demo.launch()
|