Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from torchvision import models
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
# CIFAR-10 labels
|
12 |
+
cifar10_classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
13 |
+
'dog', 'frog', 'horse', 'ship', 'truck']
|
14 |
+
|
15 |
+
# Transforms
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.Resize((32, 32)),
|
18 |
+
transforms.ToTensor(),
|
19 |
+
transforms.Normalize((0.5,), (0.5,))
|
20 |
+
])
|
21 |
+
|
22 |
+
# Load CIFAR-10
|
23 |
+
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
24 |
+
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
25 |
+
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
26 |
+
|
27 |
+
def predict(model, image_tensor):
|
28 |
+
model.eval()
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(image_tensor.unsqueeze(0))
|
31 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=0)
|
32 |
+
pred = torch.argmax(probs).item()
|
33 |
+
return probs, pred
|
34 |
+
|
35 |
+
def unlearn(model, image_tensor, label_idx, learning_rate, steps=10):
|
36 |
+
model.train()
|
37 |
+
for m in model.modules():
|
38 |
+
if isinstance(m, nn.BatchNorm2d):
|
39 |
+
m.eval()
|
40 |
+
|
41 |
+
criterion = nn.CrossEntropyLoss()
|
42 |
+
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
|
43 |
+
|
44 |
+
for _ in range(steps):
|
45 |
+
output = model(image_tensor.unsqueeze(0))
|
46 |
+
loss = -criterion(output, torch.tensor([label_idx]))
|
47 |
+
optimizer.zero_grad()
|
48 |
+
loss.backward()
|
49 |
+
optimizer.step()
|
50 |
+
|
51 |
+
def evaluate_model(model, testloader):
|
52 |
+
model.eval()
|
53 |
+
total, correct, loss_total = 0, 0, 0.0
|
54 |
+
criterion = nn.CrossEntropyLoss()
|
55 |
+
with torch.no_grad():
|
56 |
+
for images, labels in testloader:
|
57 |
+
outputs = model(images)
|
58 |
+
_, preds = torch.max(outputs, 1)
|
59 |
+
loss = criterion(outputs, labels)
|
60 |
+
total += labels.size(0)
|
61 |
+
correct += (preds == labels).sum().item()
|
62 |
+
loss_total += loss.item() * labels.size(0)
|
63 |
+
return round(100 * correct / total, 2), round(loss_total / total, 4)
|
64 |
+
|
65 |
+
def run_unlearning(index_to_unlearn, learning_rate):
|
66 |
+
# Load original model
|
67 |
+
original_model = models.resnet18(weights=None)
|
68 |
+
original_model.fc = nn.Linear(original_model.fc.in_features, 10)
|
69 |
+
original_model.load_state_dict(torch.load("resnet18.pth"))
|
70 |
+
original_model.eval()
|
71 |
+
|
72 |
+
# Duplicate model for unlearning
|
73 |
+
unlearned_model = models.resnet18(weights=None)
|
74 |
+
unlearned_model.fc = nn.Linear(unlearned_model.fc.in_features, 10)
|
75 |
+
unlearned_model.load_state_dict(torch.load("resnet18.pth"))
|
76 |
+
|
77 |
+
# Get sample
|
78 |
+
image_tensor, label_idx = trainset[index_to_unlearn]
|
79 |
+
label_name = cifar10_classes[label_idx]
|
80 |
+
|
81 |
+
# Prediction before
|
82 |
+
probs_before, pred_before = predict(original_model, image_tensor)
|
83 |
+
conf_before = probs_before[label_idx].item()
|
84 |
+
|
85 |
+
# Unlearning
|
86 |
+
unlearn(unlearned_model, image_tensor, label_idx, learning_rate)
|
87 |
+
|
88 |
+
# Prediction after
|
89 |
+
probs_after, pred_after = predict(unlearned_model, image_tensor)
|
90 |
+
conf_after = probs_after[label_idx].item()
|
91 |
+
|
92 |
+
# Evaluate full test set
|
93 |
+
orig_acc, orig_loss = evaluate_model(original_model, testloader)
|
94 |
+
unlearn_acc, unlearn_loss = evaluate_model(unlearned_model, testloader)
|
95 |
+
|
96 |
+
result = f"""
|
97 |
+
π Index Unlearned: {index_to_unlearn} | Label: {label_name}
|
98 |
+
|
99 |
+
π BEFORE Unlearning:
|
100 |
+
- Prediction: {cifar10_classes[pred_before]}
|
101 |
+
- Confidence: {conf_before:.4f}
|
102 |
+
|
103 |
+
π§½ AFTER Unlearning:
|
104 |
+
- Prediction: {cifar10_classes[pred_after]}
|
105 |
+
- Confidence: {conf_after:.4f}
|
106 |
+
|
107 |
+
π Confidence Drop: {conf_before - conf_after:.4f}
|
108 |
+
|
109 |
+
π§ͺ Test Set Performance:
|
110 |
+
- Original Model: {orig_acc:.2f}% | Loss: {orig_loss:.4f}
|
111 |
+
- Unlearned Model: {unlearn_acc:.2f}% | Loss: {unlearn_loss:.4f}
|
112 |
+
"""
|
113 |
+
return result
|
114 |
+
|
115 |
+
# Gradio Interface
|
116 |
+
demo = gr.Interface(
|
117 |
+
fn=run_unlearning,
|
118 |
+
inputs=[
|
119 |
+
gr.Slider(0, len(trainset)-1, step=1, label="Select Index to Unlearn"),
|
120 |
+
gr.Slider(0.0001, 0.1, step=0.0001, value=0.01, label="Learning Rate (for Unlearning)")
|
121 |
+
],
|
122 |
+
outputs="text",
|
123 |
+
title="π CIFAR-10 Machine Unlearning",
|
124 |
+
description="Load a pre-trained ResNet18 and unlearn a specific index from the CIFAR-10 training set."
|
125 |
+
)
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
demo.launch()
|