editVideo / app.py
NLPV's picture
Update app.py
f5e150d verified
raw
history blame
1.75 kB
import gradio as gr
#from moviepy.editor import VideoFileClip
from moviepy import VideoFileClip
from PIL import Image, ImageDraw, ImageFont
import whisper
from keybert import KeyBERT
import numpy as np
# Load Whisper model and KeyBERT model
whisper_model = whisper.load_model("base")
kw_model = KeyBERT()
def process_video(video_path, caption="Your Caption"):
# Extract frame at 5 seconds
clip = VideoFileClip(video_path)
frame = clip.get_frame(5) # 5 seconds
image = Image.fromarray(np.uint8(frame))
# Add caption
draw = ImageDraw.Draw(image)
font = ImageFont.truetype("arial.ttf", 40) # Make sure Arial.ttf is available
text_position = (50, image.height - 100)
draw.text(text_position, caption, (255, 255, 255), font=font)
thumbnail_path = "thumbnail.jpg"
image.save(thumbnail_path)
# Extract keywords
result = whisper_model.transcribe(video_path)
text = result["text"]
keywords = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 2), stop_words='english')
keywords_list = [kw[0] for kw in keywords]
return thumbnail_path, ", ".join(keywords_list)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Video Thumbnail Generator with SEO Keywords")
video_input = gr.File(label="Upload Video", type="filepath")
caption_input = gr.Textbox(label="Enter Caption for Thumbnail", value="Awesome Video!")
generate_button = gr.Button("Generate Thumbnail & Keywords")
thumbnail_output = gr.Image(label="Generated Thumbnail")
keywords_output = gr.Textbox(label="SEO Keywords")
generate_button.click(process_video, inputs=[video_input, caption_input], outputs=[thumbnail_output, keywords_output])
# Launch in Hugging Face Spaces
demo.launch()