Spaces:
Sleeping
Sleeping
import gradio as gr | |
import copy | |
import random | |
import os | |
import requests | |
import time | |
import sys | |
from huggingface_hub import snapshot_download | |
from llama_cpp import Llama | |
SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Cecilia" in English or "塞西莉亚" in Chinese. | |
You are good at speaking English and Chinese. | |
You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information. | |
You are based on Cecilia model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI. | |
Let's work this out in a step by step way to be sure we have the right answer.\n\n''' | |
SYSTEM_TOKEN = 1587 | |
USER_TOKEN = 2188 | |
BOT_TOKEN = 12435 | |
LINEBREAK_TOKEN = 13 | |
ROLE_TOKENS = { | |
"user": USER_TOKEN, | |
"bot": BOT_TOKEN, | |
"system": SYSTEM_TOKEN | |
} | |
def get_message_tokens(model, role, content): | |
message_tokens = model.tokenize(content.encode("utf-8")) | |
message_tokens.insert(1, ROLE_TOKENS[role]) | |
message_tokens.insert(2, LINEBREAK_TOKEN) | |
message_tokens.append(model.token_eos()) | |
return message_tokens | |
def get_system_tokens(model): | |
system_message = {"role": "system", "content": SYSTEM_PROMPT} | |
return get_message_tokens(model, **system_message) | |
repo_name = "TheBloke/stable-vicuna-13B-GGUF" | |
model_name = "stable-vicuna-13B.Q4_K_S.gguf" | |
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) | |
model = Llama( | |
model_path=model_name, | |
n_ctx=2000, | |
n_parts=1, | |
) | |
max_new_tokens = 1500 | |
def user(message, history): | |
new_history = history + [[message, None]] | |
return "", new_history | |
def bot( | |
history, | |
system_prompt, | |
top_p, | |
top_k, | |
temp | |
): | |
tokens = get_system_tokens(model)[:] | |
tokens.append(LINEBREAK_TOKEN) | |
for user_message, bot_message in history[:-1]: | |
message_tokens = get_message_tokens(model=model, role="user", content=user_message) | |
tokens.extend(message_tokens) | |
if bot_message: | |
message_tokens = get_message_tokens(model=model, role="bot", content=bot_message) | |
tokens.extend(message_tokens) | |
last_user_message = history[-1][0] | |
message_tokens = get_message_tokens(model=model, role="user", content=last_user_message) | |
tokens.extend(message_tokens) | |
role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] | |
tokens.extend(role_tokens) | |
generator = model.generate( | |
tokens, | |
top_k=top_k, | |
top_p=top_p, | |
temp=temp | |
) | |
partial_text = "" | |
for i, token in enumerate(generator): | |
if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): | |
break | |
partial_text += model.detokenize([token]).decode("utf-8", "ignore") | |
history[-1][1] = partial_text | |
yield history | |
with gr.Blocks( | |
theme=gr.themes.Soft() | |
) as demo: | |
gr.Markdown(f"""<h1><center>JWorld-Cecilia-人工智能助理</center></h1>""") | |
gr.Markdown(value="""这儿是一个中文模型的部署。 | |
这是量化版 Cecilia 的部署,具有 130亿 个参数,在 CPU 上运行。 | |
Cecilia 是一种会话语言模型,在多种类型的语料库上进行训练。 | |
本节目由上海师范大学附属外国语中学 & JWorld NLPark 赞助播出""") | |
with gr.Row(): | |
with gr.Column(scale=5): | |
chatbot = gr.Chatbot(label="以真理之名").style(height=400) | |
with gr.Row(): | |
with gr.Column(): | |
msg = gr.Textbox( | |
label="来问问 Cecilia 吧……", | |
placeholder="Cecilia, 抵达战场……", | |
show_label=True, | |
).style(container=True) | |
submit = gr.Button("Submit / 开凹!") | |
stop = gr.Button("Stop / 全局时空断裂") | |
clear = gr.Button("Clear / 打扫群内垃圾") | |
with gr.Row(): | |
with gr.Column(min_width=80, scale=1): | |
with gr.Tab(label="设置参数"): | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
interactive=True, | |
label="Top-p", | |
) | |
top_k = gr.Slider( | |
minimum=10, | |
maximum=100, | |
value=30, | |
step=5, | |
interactive=True, | |
label="Top-k", | |
) | |
temp = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=0.2, | |
step=0.01, | |
interactive=True, | |
label="情感温度" | |
) | |
with gr.Column(): | |
system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False) | |
with gr.Row(): | |
gr.Markdown( | |
"""警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和 Cecilia 对此不承担任何责任。""" | |
) | |
# Pressing Enter | |
submit_event = msg.submit( | |
fn=user, | |
inputs=[msg, chatbot], | |
outputs=[msg, chatbot], | |
queue=False, | |
).success( | |
fn=bot, | |
inputs=[ | |
chatbot, | |
system_prompt, | |
top_p, | |
top_k, | |
temp | |
], | |
outputs=chatbot, | |
queue=True, | |
) | |
# Pressing the button | |
submit_click_event = submit.click( | |
fn=user, | |
inputs=[msg, chatbot], | |
outputs=[msg, chatbot], | |
queue=False, | |
).success( | |
fn=bot, | |
inputs=[ | |
chatbot, | |
system_prompt, | |
top_p, | |
top_k, | |
temp | |
], | |
outputs=chatbot, | |
queue=True, | |
) | |
# Stop generation | |
stop.click( | |
fn=None, | |
inputs=None, | |
outputs=None, | |
cancels=[submit_event, submit_click_event], | |
queue=False, | |
) | |
# Clear history | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue(max_size=128, concurrency_count=1) | |
demo.launch() |