README / app.py
jjzha's picture
Update app.py
c44d250 verified
raw
history blame
1.16 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
def chat(prompt):
messages = [
{"role": "system", "content": "Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=20
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
model_name = "NLPnorth/snakmodel-7b-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
demo.launch()