|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gradio as gr |
|
|
|
def chat(prompt): |
|
messages = [ |
|
{"role": "system", "content": "Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=20 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
return response |
|
|
|
model_name = "NLPnorth/snakmodel-7b-instruct" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto", |
|
low_cpu_mem_usage=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
demo = gr.Interface(fn=chat, inputs="text", outputs="text") |
|
demo.launch() |
|
|