NPHardEval-leaderboard / src /assets /hardcoded_evals.py
Clémentine
FT: precision and adapter models
12cea14
raw
history blame
1.33 kB
from src.utils_display import AutoEvalColumn, model_hyperlink
gpt4_values = {
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt4"),
AutoEvalColumn.revision.name: "tech report",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.average.name: 84.3,
AutoEvalColumn.arc.name: 96.3,
AutoEvalColumn.hellaswag.name: 95.3,
AutoEvalColumn.mmlu.name: 86.4,
AutoEvalColumn.truthfulqa.name: 59.0,
AutoEvalColumn.dummy.name: "GPT-4",
}
gpt35_values = {
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt3.5"),
AutoEvalColumn.revision.name: "tech report",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.average.name: 71.9,
AutoEvalColumn.arc.name: 85.2,
AutoEvalColumn.hellaswag.name: 85.5,
AutoEvalColumn.mmlu.name: 70.0,
AutoEvalColumn.truthfulqa.name: 47.0,
AutoEvalColumn.dummy.name: "GPT-3.5",
}
baseline = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.average.name: 25.0,
AutoEvalColumn.arc.name: 25.0,
AutoEvalColumn.hellaswag.name: 25.0,
AutoEvalColumn.mmlu.name: 25.0,
AutoEvalColumn.truthfulqa.name: 25.0,
AutoEvalColumn.dummy.name: "baseline",
}