Clémentine
commited on
Commit
·
ef5b51c
1
Parent(s):
5140860
fix model search
Browse files- app.py +18 -18
- model_info_cache.pkl +2 -2
- model_size_cache.pkl +2 -2
- src/display_models/get_model_metadata.py +1 -1
app.py
CHANGED
@@ -224,7 +224,6 @@ def change_tab(query_param: str):
|
|
224 |
# Searching and filtering
|
225 |
def update_table(
|
226 |
hidden_df: pd.DataFrame,
|
227 |
-
current_columns_df: pd.DataFrame,
|
228 |
columns: list,
|
229 |
type_query: list,
|
230 |
precision_query: str,
|
@@ -233,16 +232,7 @@ def update_table(
|
|
233 |
query: str,
|
234 |
):
|
235 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
236 |
-
|
237 |
-
if query != "":
|
238 |
-
queries = query.split(";")
|
239 |
-
for _q in queries:
|
240 |
-
if _q != "":
|
241 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
242 |
-
if len(temp_filtered_df) > 0:
|
243 |
-
final_df.append(temp_filtered_df)
|
244 |
-
if len(final_df) > 0:
|
245 |
-
filtered_df = pd.concat(final_df).drop_duplicates()
|
246 |
df = select_columns(filtered_df, columns)
|
247 |
return df
|
248 |
|
@@ -250,7 +240,6 @@ def update_table(
|
|
250 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
251 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
252 |
|
253 |
-
|
254 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
255 |
always_here_cols = [
|
256 |
AutoEvalColumn.model_type_symbol.name,
|
@@ -274,6 +263,23 @@ NUMERIC_INTERVALS = {
|
|
274 |
}
|
275 |
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
def filter_models(
|
278 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
279 |
) -> pd.DataFrame:
|
@@ -409,7 +415,6 @@ with demo:
|
|
409 |
update_table,
|
410 |
[
|
411 |
hidden_leaderboard_table_for_search,
|
412 |
-
leaderboard_table,
|
413 |
shown_columns,
|
414 |
filter_columns_type,
|
415 |
filter_columns_precision,
|
@@ -423,7 +428,6 @@ with demo:
|
|
423 |
update_table,
|
424 |
[
|
425 |
hidden_leaderboard_table_for_search,
|
426 |
-
leaderboard_table,
|
427 |
shown_columns,
|
428 |
filter_columns_type,
|
429 |
filter_columns_precision,
|
@@ -438,7 +442,6 @@ with demo:
|
|
438 |
update_table,
|
439 |
[
|
440 |
hidden_leaderboard_table_for_search,
|
441 |
-
leaderboard_table,
|
442 |
shown_columns,
|
443 |
filter_columns_type,
|
444 |
filter_columns_precision,
|
@@ -453,7 +456,6 @@ with demo:
|
|
453 |
update_table,
|
454 |
[
|
455 |
hidden_leaderboard_table_for_search,
|
456 |
-
leaderboard_table,
|
457 |
shown_columns,
|
458 |
filter_columns_type,
|
459 |
filter_columns_precision,
|
@@ -468,7 +470,6 @@ with demo:
|
|
468 |
update_table,
|
469 |
[
|
470 |
hidden_leaderboard_table_for_search,
|
471 |
-
leaderboard_table,
|
472 |
shown_columns,
|
473 |
filter_columns_type,
|
474 |
filter_columns_precision,
|
@@ -483,7 +484,6 @@ with demo:
|
|
483 |
update_table,
|
484 |
[
|
485 |
hidden_leaderboard_table_for_search,
|
486 |
-
leaderboard_table,
|
487 |
shown_columns,
|
488 |
filter_columns_type,
|
489 |
filter_columns_precision,
|
|
|
224 |
# Searching and filtering
|
225 |
def update_table(
|
226 |
hidden_df: pd.DataFrame,
|
|
|
227 |
columns: list,
|
228 |
type_query: list,
|
229 |
precision_query: str,
|
|
|
232 |
query: str,
|
233 |
):
|
234 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
235 |
+
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
df = select_columns(filtered_df, columns)
|
237 |
return df
|
238 |
|
|
|
240 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
241 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
242 |
|
|
|
243 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
244 |
always_here_cols = [
|
245 |
AutoEvalColumn.model_type_symbol.name,
|
|
|
263 |
}
|
264 |
|
265 |
|
266 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
267 |
+
"""Added by Abishek"""
|
268 |
+
final_df = []
|
269 |
+
if query != "":
|
270 |
+
queries = [q.strip() for q in query.split(";")]
|
271 |
+
for _q in queries:
|
272 |
+
_q = _q.strip()
|
273 |
+
if _q != "":
|
274 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
275 |
+
if len(temp_filtered_df) > 0:
|
276 |
+
final_df.append(temp_filtered_df)
|
277 |
+
if len(final_df) > 0:
|
278 |
+
filtered_df = pd.concat(final_df)
|
279 |
+
filtered_df = filtered_df.drop_duplicates(subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name])
|
280 |
+
|
281 |
+
return filtered_df
|
282 |
+
|
283 |
def filter_models(
|
284 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
285 |
) -> pd.DataFrame:
|
|
|
415 |
update_table,
|
416 |
[
|
417 |
hidden_leaderboard_table_for_search,
|
|
|
418 |
shown_columns,
|
419 |
filter_columns_type,
|
420 |
filter_columns_precision,
|
|
|
428 |
update_table,
|
429 |
[
|
430 |
hidden_leaderboard_table_for_search,
|
|
|
431 |
shown_columns,
|
432 |
filter_columns_type,
|
433 |
filter_columns_precision,
|
|
|
442 |
update_table,
|
443 |
[
|
444 |
hidden_leaderboard_table_for_search,
|
|
|
445 |
shown_columns,
|
446 |
filter_columns_type,
|
447 |
filter_columns_precision,
|
|
|
456 |
update_table,
|
457 |
[
|
458 |
hidden_leaderboard_table_for_search,
|
|
|
459 |
shown_columns,
|
460 |
filter_columns_type,
|
461 |
filter_columns_precision,
|
|
|
470 |
update_table,
|
471 |
[
|
472 |
hidden_leaderboard_table_for_search,
|
|
|
473 |
shown_columns,
|
474 |
filter_columns_type,
|
475 |
filter_columns_precision,
|
|
|
484 |
update_table,
|
485 |
[
|
486 |
hidden_leaderboard_table_for_search,
|
|
|
487 |
shown_columns,
|
488 |
filter_columns_type,
|
489 |
filter_columns_precision,
|
model_info_cache.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94e311e2414e80b8eb5e50844c2e79daa4bd3bb6be516fc2448bd05242d125f9
|
3 |
+
size 3656702
|
model_size_cache.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aedc91b51cf257cbe3e26a1fdd99e19250bacfa619a64dd85e67d4ff383130f
|
3 |
+
size 75455
|
src/display_models/get_model_metadata.py
CHANGED
@@ -40,7 +40,7 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
40 |
try:
|
41 |
model_info = api.model_info(model_name)
|
42 |
model_info_cache[model_name] = model_info
|
43 |
-
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
44 |
print("Repo not found!", model_name)
|
45 |
model_data[AutoEvalColumn.license.name] = None
|
46 |
model_data[AutoEvalColumn.likes.name] = None
|
|
|
40 |
try:
|
41 |
model_info = api.model_info(model_name)
|
42 |
model_info_cache[model_name] = model_info
|
43 |
+
except (huggingface_hub.utils._errors.RepositoryNotFoundError, huggingface_hub.utils._errors.HfHubHTTPError):
|
44 |
print("Repo not found!", model_name)
|
45 |
model_data[AutoEvalColumn.license.name] = None
|
46 |
model_data[AutoEvalColumn.likes.name] = None
|