File size: 4,355 Bytes
516d9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ad624
6eabff1
516d9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import subprocess

if os.environ.get('SYSTEM') == 'spaces':
    subprocess.call('pip install insightface==0.6.2'.split())

import cv2
import gradio as gr
import huggingface_hub
import insightface
import numpy as np
import onnxruntime as ort

TITLE = 'insightface Person Detection'
DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/examples/person_detection.'
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.insightface-person-detection" alt="visitor badge"/></center>'

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def load_model():
    path = huggingface_hub.hf_hub_download('hysts/insightface',
                                           'models/scrfd_person_2.5g.onnx',
                                           use_auth_token=TOKEN)
    options = ort.SessionOptions()
    options.intra_op_num_threads = 8
    options.inter_op_num_threads = 8
    session = ort.InferenceSession(path,
                                   sess_options=options,
                                   providers=['CPUExecutionProvider'])
    model = insightface.model_zoo.retinaface.RetinaFace(model_file=path,
                                                        session=session)
    return model


def detect_person(
    img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace
) -> tuple[np.ndarray, np.ndarray]:
    bboxes, kpss = detector.detect(img)
    bboxes = np.round(bboxes[:, :4]).astype(np.int)
    kpss = np.round(kpss).astype(np.int)
    kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
    kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0])
    vbboxes = bboxes.copy()
    vbboxes[:, 0] = kpss[:, 0, 0]
    vbboxes[:, 1] = kpss[:, 0, 1]
    vbboxes[:, 2] = kpss[:, 4, 0]
    vbboxes[:, 3] = kpss[:, 4, 1]
    return bboxes, vbboxes


def visualize(image: np.ndarray, bboxes: np.ndarray,
              vbboxes: np.ndarray) -> np.ndarray:
    res = image.copy()
    for i in range(bboxes.shape[0]):
        bbox = bboxes[i]
        vbbox = vbboxes[i]
        x1, y1, x2, y2 = bbox
        vx1, vy1, vx2, vy2 = vbbox
        cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1)
        alpha = 0.8
        color = (255, 0, 0)
        for c in range(3):
            res[vy1:vy2, vx1:vx2,
                c] = res[vy1:vy2, vx1:vx2,
                         c] * alpha + color[c] * (1.0 - alpha)
        cv2.circle(res, (vx1, vy1), 1, color, 2)
        cv2.circle(res, (vx1, vy2), 1, color, 2)
        cv2.circle(res, (vx2, vy1), 1, color, 2)
        cv2.circle(res, (vx2, vy2), 1, color, 2)
    return res


def detect(image: np.ndarray, detector) -> np.ndarray:
    image = image[:, :, ::-1]  # RGB -> BGR
    bboxes, vbboxes = detect_person(image, detector)
    res = visualize(image, bboxes, vbboxes)
    return res[:, :, ::-1]  # BGR -> RGB


def main():
    args = parse_args()

    detector = load_model()
    detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))

    func = functools.partial(detect, detector=detector)
    func = functools.update_wrapper(func, detect)

    image_dir = pathlib.Path('images')
    examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))]

    gr.Interface(
        func,
        gr.inputs.Image(type='numpy', label='Input'),
        gr.outputs.Image(type='numpy', label='Output'),
        examples=examples,
        examples_per_page=30,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()