File size: 4,355 Bytes
516d9b1 80ad624 6eabff1 516d9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import subprocess
if os.environ.get('SYSTEM') == 'spaces':
subprocess.call('pip install insightface==0.6.2'.split())
import cv2
import gradio as gr
import huggingface_hub
import insightface
import numpy as np
import onnxruntime as ort
TITLE = 'insightface Person Detection'
DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/examples/person_detection.'
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.insightface-person-detection" alt="visitor badge"/></center>'
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_model():
path = huggingface_hub.hf_hub_download('hysts/insightface',
'models/scrfd_person_2.5g.onnx',
use_auth_token=TOKEN)
options = ort.SessionOptions()
options.intra_op_num_threads = 8
options.inter_op_num_threads = 8
session = ort.InferenceSession(path,
sess_options=options,
providers=['CPUExecutionProvider'])
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path,
session=session)
return model
def detect_person(
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace
) -> tuple[np.ndarray, np.ndarray]:
bboxes, kpss = detector.detect(img)
bboxes = np.round(bboxes[:, :4]).astype(np.int)
kpss = np.round(kpss).astype(np.int)
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0])
vbboxes = bboxes.copy()
vbboxes[:, 0] = kpss[:, 0, 0]
vbboxes[:, 1] = kpss[:, 0, 1]
vbboxes[:, 2] = kpss[:, 4, 0]
vbboxes[:, 3] = kpss[:, 4, 1]
return bboxes, vbboxes
def visualize(image: np.ndarray, bboxes: np.ndarray,
vbboxes: np.ndarray) -> np.ndarray:
res = image.copy()
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
vbbox = vbboxes[i]
x1, y1, x2, y2 = bbox
vx1, vy1, vx2, vy2 = vbbox
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1)
alpha = 0.8
color = (255, 0, 0)
for c in range(3):
res[vy1:vy2, vx1:vx2,
c] = res[vy1:vy2, vx1:vx2,
c] * alpha + color[c] * (1.0 - alpha)
cv2.circle(res, (vx1, vy1), 1, color, 2)
cv2.circle(res, (vx1, vy2), 1, color, 2)
cv2.circle(res, (vx2, vy1), 1, color, 2)
cv2.circle(res, (vx2, vy2), 1, color, 2)
return res
def detect(image: np.ndarray, detector) -> np.ndarray:
image = image[:, :, ::-1] # RGB -> BGR
bboxes, vbboxes = detect_person(image, detector)
res = visualize(image, bboxes, vbboxes)
return res[:, :, ::-1] # BGR -> RGB
def main():
args = parse_args()
detector = load_model()
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
func = functools.partial(detect, detector=detector)
func = functools.update_wrapper(func, detect)
image_dir = pathlib.Path('images')
examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))]
gr.Interface(
func,
gr.inputs.Image(type='numpy', label='Input'),
gr.outputs.Image(type='numpy', label='Output'),
examples=examples,
examples_per_page=30,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|