|
|
|
|
|
from __future__ import annotations |
|
|
|
import functools |
|
import os |
|
import pathlib |
|
import shlex |
|
import subprocess |
|
|
|
if os.getenv('SYSTEM') == 'spaces': |
|
subprocess.call(shlex.split('pip install insightface==0.6.2')) |
|
|
|
import cv2 |
|
import gradio as gr |
|
import huggingface_hub |
|
import insightface |
|
import numpy as np |
|
import onnxruntime as ort |
|
|
|
TITLE = 'insightface Person Detection' |
|
DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/examples/person_detection.' |
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
|
|
|
|
def load_model(): |
|
path = huggingface_hub.hf_hub_download('hysts/insightface', |
|
'models/scrfd_person_2.5g.onnx', |
|
use_auth_token=HF_TOKEN) |
|
options = ort.SessionOptions() |
|
options.intra_op_num_threads = 8 |
|
options.inter_op_num_threads = 8 |
|
session = ort.InferenceSession( |
|
path, |
|
sess_options=options, |
|
providers=['CPUExecutionProvider', 'CUDAExecutionProvider']) |
|
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, |
|
session=session) |
|
return model |
|
|
|
|
|
def detect_person( |
|
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace |
|
) -> tuple[np.ndarray, np.ndarray]: |
|
bboxes, kpss = detector.detect(img) |
|
bboxes = np.round(bboxes[:, :4]).astype(np.int) |
|
kpss = np.round(kpss).astype(np.int) |
|
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) |
|
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) |
|
vbboxes = bboxes.copy() |
|
vbboxes[:, 0] = kpss[:, 0, 0] |
|
vbboxes[:, 1] = kpss[:, 0, 1] |
|
vbboxes[:, 2] = kpss[:, 4, 0] |
|
vbboxes[:, 3] = kpss[:, 4, 1] |
|
return bboxes, vbboxes |
|
|
|
|
|
def visualize(image: np.ndarray, bboxes: np.ndarray, |
|
vbboxes: np.ndarray) -> np.ndarray: |
|
res = image.copy() |
|
for i in range(bboxes.shape[0]): |
|
bbox = bboxes[i] |
|
vbbox = vbboxes[i] |
|
x1, y1, x2, y2 = bbox |
|
vx1, vy1, vx2, vy2 = vbbox |
|
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1) |
|
alpha = 0.8 |
|
color = (255, 0, 0) |
|
for c in range(3): |
|
res[vy1:vy2, vx1:vx2, |
|
c] = res[vy1:vy2, vx1:vx2, |
|
c] * alpha + color[c] * (1.0 - alpha) |
|
cv2.circle(res, (vx1, vy1), 1, color, 2) |
|
cv2.circle(res, (vx1, vy2), 1, color, 2) |
|
cv2.circle(res, (vx2, vy1), 1, color, 2) |
|
cv2.circle(res, (vx2, vy2), 1, color, 2) |
|
return res |
|
|
|
|
|
def detect(image: np.ndarray, detector) -> np.ndarray: |
|
image = image[:, :, ::-1] |
|
bboxes, vbboxes = detect_person(image, detector) |
|
res = visualize(image, bboxes, vbboxes) |
|
return res[:, :, ::-1] |
|
|
|
|
|
detector = load_model() |
|
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) |
|
func = functools.partial(detect, detector=detector) |
|
|
|
image_dir = pathlib.Path('images') |
|
examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))] |
|
|
|
gr.Interface( |
|
fn=func, |
|
inputs=gr.Image(label='Input', type='numpy'), |
|
outputs=gr.Image(label='Output', type='numpy'), |
|
examples=examples, |
|
examples_per_page=30, |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
).launch(show_api=False) |
|
|