#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import subprocess
if os.environ.get('SYSTEM') == 'spaces':
subprocess.call('pip install insightface==0.6.2'.split())
import cv2
import gradio as gr
import huggingface_hub
import insightface
import numpy as np
import onnxruntime as ort
TITLE = 'insightface Person Detection'
DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/examples/person_detection.'
ARTICLE = '
'
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_model():
path = huggingface_hub.hf_hub_download('hysts/insightface',
'models/scrfd_person_2.5g.onnx',
use_auth_token=TOKEN)
options = ort.SessionOptions()
options.intra_op_num_threads = 8
options.inter_op_num_threads = 8
session = ort.InferenceSession(path,
sess_options=options,
providers=['CPUExecutionProvider'])
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path,
session=session)
return model
def detect_person(
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace
) -> tuple[np.ndarray, np.ndarray]:
bboxes, kpss = detector.detect(img)
bboxes = np.round(bboxes[:, :4]).astype(np.int)
kpss = np.round(kpss).astype(np.int)
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0])
vbboxes = bboxes.copy()
vbboxes[:, 0] = kpss[:, 0, 0]
vbboxes[:, 1] = kpss[:, 0, 1]
vbboxes[:, 2] = kpss[:, 4, 0]
vbboxes[:, 3] = kpss[:, 4, 1]
return bboxes, vbboxes
def visualize(image: np.ndarray, bboxes: np.ndarray,
vbboxes: np.ndarray) -> np.ndarray:
res = image.copy()
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
vbbox = vbboxes[i]
x1, y1, x2, y2 = bbox
vx1, vy1, vx2, vy2 = vbbox
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1)
alpha = 0.8
color = (255, 0, 0)
for c in range(3):
res[vy1:vy2, vx1:vx2,
c] = res[vy1:vy2, vx1:vx2,
c] * alpha + color[c] * (1.0 - alpha)
cv2.circle(res, (vx1, vy1), 1, color, 2)
cv2.circle(res, (vx1, vy2), 1, color, 2)
cv2.circle(res, (vx2, vy1), 1, color, 2)
cv2.circle(res, (vx2, vy2), 1, color, 2)
return res
def detect(image: np.ndarray, detector) -> np.ndarray:
image = image[:, :, ::-1] # RGB -> BGR
bboxes, vbboxes = detect_person(image, detector)
res = visualize(image, bboxes, vbboxes)
return res[:, :, ::-1] # BGR -> RGB
def main():
args = parse_args()
detector = load_model()
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
func = functools.partial(detect, detector=detector)
func = functools.update_wrapper(func, detect)
image_dir = pathlib.Path('images')
examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))]
gr.Interface(
func,
gr.inputs.Image(type='numpy', label='Input'),
gr.outputs.Image(type='numpy', label='Output'),
examples=examples,
examples_per_page=30,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()