#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pathlib import subprocess if os.environ.get('SYSTEM') == 'spaces': subprocess.call('pip install insightface==0.6.2'.split()) import cv2 import gradio as gr import huggingface_hub import insightface import numpy as np import onnxruntime as ort TITLE = 'insightface Person Detection' DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/examples/person_detection.' ARTICLE = '
visitor badge
' TOKEN = os.environ['TOKEN'] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') return parser.parse_args() def load_model(): path = huggingface_hub.hf_hub_download('hysts/insightface', 'models/scrfd_person_2.5g.onnx', use_auth_token=TOKEN) options = ort.SessionOptions() options.intra_op_num_threads = 8 options.inter_op_num_threads = 8 session = ort.InferenceSession(path, sess_options=options, providers=['CPUExecutionProvider']) model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) return model def detect_person( img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace ) -> tuple[np.ndarray, np.ndarray]: bboxes, kpss = detector.detect(img) bboxes = np.round(bboxes[:, :4]).astype(np.int) kpss = np.round(kpss).astype(np.int) kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) vbboxes = bboxes.copy() vbboxes[:, 0] = kpss[:, 0, 0] vbboxes[:, 1] = kpss[:, 0, 1] vbboxes[:, 2] = kpss[:, 4, 0] vbboxes[:, 3] = kpss[:, 4, 1] return bboxes, vbboxes def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> np.ndarray: res = image.copy() for i in range(bboxes.shape[0]): bbox = bboxes[i] vbbox = vbboxes[i] x1, y1, x2, y2 = bbox vx1, vy1, vx2, vy2 = vbbox cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1) alpha = 0.8 color = (255, 0, 0) for c in range(3): res[vy1:vy2, vx1:vx2, c] = res[vy1:vy2, vx1:vx2, c] * alpha + color[c] * (1.0 - alpha) cv2.circle(res, (vx1, vy1), 1, color, 2) cv2.circle(res, (vx1, vy2), 1, color, 2) cv2.circle(res, (vx2, vy1), 1, color, 2) cv2.circle(res, (vx2, vy2), 1, color, 2) return res def detect(image: np.ndarray, detector) -> np.ndarray: image = image[:, :, ::-1] # RGB -> BGR bboxes, vbboxes = detect_person(image, detector) res = visualize(image, bboxes, vbboxes) return res[:, :, ::-1] # BGR -> RGB def main(): args = parse_args() detector = load_model() detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) func = functools.partial(detect, detector=detector) func = functools.update_wrapper(func, detect) image_dir = pathlib.Path('images') examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))] gr.Interface( func, gr.inputs.Image(type='numpy', label='Input'), gr.outputs.Image(type='numpy', label='Output'), examples=examples, examples_per_page=30, title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()