Spaces:
No application file
No application file
import cv2 | |
import cv2.typing | |
import numpy | |
import typing | |
# Enumerations | |
DNN_BACKEND_DEFAULT: int | |
DNN_BACKEND_HALIDE: int | |
DNN_BACKEND_INFERENCE_ENGINE: int | |
DNN_BACKEND_OPENCV: int | |
DNN_BACKEND_VKCOM: int | |
DNN_BACKEND_CUDA: int | |
DNN_BACKEND_WEBNN: int | |
DNN_BACKEND_TIMVX: int | |
DNN_BACKEND_CANN: int | |
Backend = int | |
"""One of [DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV, DNN_BACKEND_VKCOM, DNN_BACKEND_CUDA, DNN_BACKEND_WEBNN, DNN_BACKEND_TIMVX, DNN_BACKEND_CANN]""" | |
DNN_TARGET_CPU: int | |
DNN_TARGET_OPENCL: int | |
DNN_TARGET_OPENCL_FP16: int | |
DNN_TARGET_MYRIAD: int | |
DNN_TARGET_VULKAN: int | |
DNN_TARGET_FPGA: int | |
DNN_TARGET_CUDA: int | |
DNN_TARGET_CUDA_FP16: int | |
DNN_TARGET_HDDL: int | |
DNN_TARGET_NPU: int | |
DNN_TARGET_CPU_FP16: int | |
Target = int | |
"""One of [DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, DNN_TARGET_VULKAN, DNN_TARGET_FPGA, DNN_TARGET_CUDA, DNN_TARGET_CUDA_FP16, DNN_TARGET_HDDL, DNN_TARGET_NPU, DNN_TARGET_CPU_FP16]""" | |
DNN_LAYOUT_UNKNOWN: int | |
DNN_LAYOUT_ND: int | |
DNN_LAYOUT_NCHW: int | |
DNN_LAYOUT_NCDHW: int | |
DNN_LAYOUT_NHWC: int | |
DNN_LAYOUT_NDHWC: int | |
DNN_LAYOUT_PLANAR: int | |
DataLayout = int | |
"""One of [DNN_LAYOUT_UNKNOWN, DNN_LAYOUT_ND, DNN_LAYOUT_NCHW, DNN_LAYOUT_NCDHW, DNN_LAYOUT_NHWC, DNN_LAYOUT_NDHWC, DNN_LAYOUT_PLANAR]""" | |
DNN_PMODE_NULL: int | |
DNN_PMODE_CROP_CENTER: int | |
DNN_PMODE_LETTERBOX: int | |
ImagePaddingMode = int | |
"""One of [DNN_PMODE_NULL, DNN_PMODE_CROP_CENTER, DNN_PMODE_LETTERBOX]""" | |
SoftNMSMethod_SOFTNMS_LINEAR: int | |
SOFT_NMSMETHOD_SOFTNMS_LINEAR: int | |
SoftNMSMethod_SOFTNMS_GAUSSIAN: int | |
SOFT_NMSMETHOD_SOFTNMS_GAUSSIAN: int | |
SoftNMSMethod = int | |
"""One of [SoftNMSMethod_SOFTNMS_LINEAR, SOFT_NMSMETHOD_SOFTNMS_LINEAR, SoftNMSMethod_SOFTNMS_GAUSSIAN, SOFT_NMSMETHOD_SOFTNMS_GAUSSIAN]""" | |
# Classes | |
class DictValue: | |
# Functions | |
def __init__(self, i: int) -> None: ... | |
def __init__(self, p: float) -> None: ... | |
def __init__(self, s: str) -> None: ... | |
def isInt(self) -> bool: ... | |
def isString(self) -> bool: ... | |
def isReal(self) -> bool: ... | |
def getIntValue(self, idx: int = ...) -> int: ... | |
def getRealValue(self, idx: int = ...) -> float: ... | |
def getStringValue(self, idx: int = ...) -> str: ... | |
class Net: | |
# Functions | |
def __init__(self) -> None: ... | |
def readFromModelOptimizer(cls, xml: str, bin: str) -> Net: ... | |
def readFromModelOptimizer(cls, bufferModelConfig: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]], bufferWeights: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ... | |
def empty(self) -> bool: ... | |
def dump(self) -> str: ... | |
def dumpToFile(self, path: str) -> None: ... | |
def getLayerId(self, layer: str) -> int: ... | |
def getLayerNames(self) -> typing.Sequence[str]: ... | |
def getLayer(self, layerId: int) -> Layer: ... | |
def getLayer(self, layerName: str) -> Layer: ... | |
def getLayer(self, layerId: cv2.typing.LayerId) -> Layer: ... | |
def connect(self, outPin: str, inpPin: str) -> None: ... | |
def setInputsNames(self, inputBlobNames: typing.Sequence[str]) -> None: ... | |
def setInputShape(self, inputName: str, shape: cv2.typing.MatShape) -> None: ... | |
def forward(self, outputName: str = ...) -> cv2.typing.MatLike: ... | |
def forward(self, outputBlobs: typing.Sequence[cv2.typing.MatLike] | None = ..., outputName: str = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def forward(self, outputBlobs: typing.Sequence[cv2.UMat] | None = ..., outputName: str = ...) -> typing.Sequence[cv2.UMat]: ... | |
def forward(self, outBlobNames: typing.Sequence[str], outputBlobs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def forward(self, outBlobNames: typing.Sequence[str], outputBlobs: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[cv2.UMat]: ... | |
def forwardAsync(self, outputName: str = ...) -> cv2.AsyncArray: ... | |
def forwardAndRetrieve(self, outBlobNames: typing.Sequence[str]) -> typing.Sequence[typing.Sequence[cv2.typing.MatLike]]: ... | |
def quantize(self, calibData: typing.Sequence[cv2.typing.MatLike], inputsDtype: int, outputsDtype: int, perChannel: bool = ...) -> Net: ... | |
def quantize(self, calibData: typing.Sequence[cv2.UMat], inputsDtype: int, outputsDtype: int, perChannel: bool = ...) -> Net: ... | |
def getInputDetails(self) -> tuple[typing.Sequence[float], typing.Sequence[int]]: ... | |
def getOutputDetails(self) -> tuple[typing.Sequence[float], typing.Sequence[int]]: ... | |
def setHalideScheduler(self, scheduler: str) -> None: ... | |
def setPreferableBackend(self, backendId: int) -> None: ... | |
def setPreferableTarget(self, targetId: int) -> None: ... | |
def setInput(self, blob: cv2.typing.MatLike, name: str = ..., scalefactor: float = ..., mean: cv2.typing.Scalar = ...) -> None: ... | |
def setInput(self, blob: cv2.UMat, name: str = ..., scalefactor: float = ..., mean: cv2.typing.Scalar = ...) -> None: ... | |
def setParam(self, layer: int, numParam: int, blob: cv2.typing.MatLike) -> None: ... | |
def setParam(self, layerName: str, numParam: int, blob: cv2.typing.MatLike) -> None: ... | |
def getParam(self, layer: int, numParam: int = ...) -> cv2.typing.MatLike: ... | |
def getParam(self, layerName: str, numParam: int = ...) -> cv2.typing.MatLike: ... | |
def getUnconnectedOutLayers(self) -> typing.Sequence[int]: ... | |
def getUnconnectedOutLayersNames(self) -> typing.Sequence[str]: ... | |
def getLayersShapes(self, netInputShapes: typing.Sequence[cv2.typing.MatShape]) -> tuple[typing.Sequence[int], typing.Sequence[typing.Sequence[cv2.typing.MatShape]], typing.Sequence[typing.Sequence[cv2.typing.MatShape]]]: ... | |
def getLayersShapes(self, netInputShape: cv2.typing.MatShape) -> tuple[typing.Sequence[int], typing.Sequence[typing.Sequence[cv2.typing.MatShape]], typing.Sequence[typing.Sequence[cv2.typing.MatShape]]]: ... | |
def getFLOPS(self, netInputShapes: typing.Sequence[cv2.typing.MatShape]) -> int: ... | |
def getFLOPS(self, netInputShape: cv2.typing.MatShape) -> int: ... | |
def getFLOPS(self, layerId: int, netInputShapes: typing.Sequence[cv2.typing.MatShape]) -> int: ... | |
def getFLOPS(self, layerId: int, netInputShape: cv2.typing.MatShape) -> int: ... | |
def getLayerTypes(self) -> typing.Sequence[str]: ... | |
def getLayersCount(self, layerType: str) -> int: ... | |
def getMemoryConsumption(self, netInputShape: cv2.typing.MatShape) -> tuple[int, int]: ... | |
def getMemoryConsumption(self, layerId: int, netInputShapes: typing.Sequence[cv2.typing.MatShape]) -> tuple[int, int]: ... | |
def getMemoryConsumption(self, layerId: int, netInputShape: cv2.typing.MatShape) -> tuple[int, int]: ... | |
def enableFusion(self, fusion: bool) -> None: ... | |
def enableWinograd(self, useWinograd: bool) -> None: ... | |
def getPerfProfile(self) -> tuple[int, typing.Sequence[float]]: ... | |
class Image2BlobParams: | |
scalefactor: cv2.typing.Scalar | |
size: cv2.typing.Size | |
mean: cv2.typing.Scalar | |
swapRB: bool | |
ddepth: int | |
datalayout: DataLayout | |
paddingmode: ImagePaddingMode | |
# Functions | |
def __init__(self) -> None: ... | |
def __init__(self, scalefactor: cv2.typing.Scalar, size: cv2.typing.Size = ..., mean: cv2.typing.Scalar = ..., swapRB: bool = ..., ddepth: int = ..., datalayout: DataLayout = ..., mode: ImagePaddingMode = ...) -> None: ... | |
class Model: | |
# Functions | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def __init__(self, network: Net) -> None: ... | |
def setInputSize(self, size: cv2.typing.Size) -> Model: ... | |
def setInputSize(self, width: int, height: int) -> Model: ... | |
def setInputMean(self, mean: cv2.typing.Scalar) -> Model: ... | |
def setInputScale(self, scale: cv2.typing.Scalar) -> Model: ... | |
def setInputCrop(self, crop: bool) -> Model: ... | |
def setInputSwapRB(self, swapRB: bool) -> Model: ... | |
def setInputParams(self, scale: float = ..., size: cv2.typing.Size = ..., mean: cv2.typing.Scalar = ..., swapRB: bool = ..., crop: bool = ...) -> None: ... | |
def predict(self, frame: cv2.typing.MatLike, outs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def predict(self, frame: cv2.UMat, outs: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[cv2.UMat]: ... | |
def setPreferableBackend(self, backendId: Backend) -> Model: ... | |
def setPreferableTarget(self, targetId: Target) -> Model: ... | |
class Layer(cv2.Algorithm): | |
blobs: typing.Sequence[cv2.typing.MatLike] | |
def name(self) -> str: ... | |
def type(self) -> str: ... | |
def preferableTarget(self) -> int: ... | |
# Functions | |
def finalize(self, inputs: typing.Sequence[cv2.typing.MatLike], outputs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def finalize(self, inputs: typing.Sequence[cv2.UMat], outputs: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[cv2.UMat]: ... | |
def run(self, inputs: typing.Sequence[cv2.typing.MatLike], internals: typing.Sequence[cv2.typing.MatLike], outputs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> tuple[typing.Sequence[cv2.typing.MatLike], typing.Sequence[cv2.typing.MatLike]]: ... | |
def outputNameToIndex(self, outputName: str) -> int: ... | |
class ClassificationModel(Model): | |
# Functions | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def __init__(self, network: Net) -> None: ... | |
def setEnableSoftmaxPostProcessing(self, enable: bool) -> ClassificationModel: ... | |
def getEnableSoftmaxPostProcessing(self) -> bool: ... | |
def classify(self, frame: cv2.typing.MatLike) -> tuple[int, float]: ... | |
def classify(self, frame: cv2.UMat) -> tuple[int, float]: ... | |
class KeypointsModel(Model): | |
# Functions | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def __init__(self, network: Net) -> None: ... | |
def estimate(self, frame: cv2.typing.MatLike, thresh: float = ...) -> typing.Sequence[cv2.typing.Point2f]: ... | |
def estimate(self, frame: cv2.UMat, thresh: float = ...) -> typing.Sequence[cv2.typing.Point2f]: ... | |
class SegmentationModel(Model): | |
# Functions | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def __init__(self, network: Net) -> None: ... | |
def segment(self, frame: cv2.typing.MatLike, mask: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ... | |
def segment(self, frame: cv2.UMat, mask: cv2.UMat | None = ...) -> cv2.UMat: ... | |
class DetectionModel(Model): | |
# Functions | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def __init__(self, network: Net) -> None: ... | |
def setNmsAcrossClasses(self, value: bool) -> DetectionModel: ... | |
def getNmsAcrossClasses(self) -> bool: ... | |
def detect(self, frame: cv2.typing.MatLike, confThreshold: float = ..., nmsThreshold: float = ...) -> tuple[typing.Sequence[int], typing.Sequence[float], typing.Sequence[cv2.typing.Rect]]: ... | |
def detect(self, frame: cv2.UMat, confThreshold: float = ..., nmsThreshold: float = ...) -> tuple[typing.Sequence[int], typing.Sequence[float], typing.Sequence[cv2.typing.Rect]]: ... | |
class TextRecognitionModel(Model): | |
# Functions | |
def __init__(self, network: Net) -> None: ... | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def setDecodeType(self, decodeType: str) -> TextRecognitionModel: ... | |
def getDecodeType(self) -> str: ... | |
def setDecodeOptsCTCPrefixBeamSearch(self, beamSize: int, vocPruneSize: int = ...) -> TextRecognitionModel: ... | |
def setVocabulary(self, vocabulary: typing.Sequence[str]) -> TextRecognitionModel: ... | |
def getVocabulary(self) -> typing.Sequence[str]: ... | |
def recognize(self, frame: cv2.typing.MatLike) -> str: ... | |
def recognize(self, frame: cv2.UMat) -> str: ... | |
def recognize(self, frame: cv2.typing.MatLike, roiRects: typing.Sequence[cv2.typing.MatLike]) -> typing.Sequence[str]: ... | |
def recognize(self, frame: cv2.UMat, roiRects: typing.Sequence[cv2.UMat]) -> typing.Sequence[str]: ... | |
class TextDetectionModel(Model): | |
# Functions | |
def detect(self, frame: cv2.typing.MatLike) -> tuple[typing.Sequence[typing.Sequence[cv2.typing.Point]], typing.Sequence[float]]: ... | |
def detect(self, frame: cv2.UMat) -> tuple[typing.Sequence[typing.Sequence[cv2.typing.Point]], typing.Sequence[float]]: ... | |
def detect(self, frame: cv2.typing.MatLike) -> typing.Sequence[typing.Sequence[cv2.typing.Point]]: ... | |
def detect(self, frame: cv2.UMat) -> typing.Sequence[typing.Sequence[cv2.typing.Point]]: ... | |
def detectTextRectangles(self, frame: cv2.typing.MatLike) -> tuple[typing.Sequence[cv2.typing.RotatedRect], typing.Sequence[float]]: ... | |
def detectTextRectangles(self, frame: cv2.UMat) -> tuple[typing.Sequence[cv2.typing.RotatedRect], typing.Sequence[float]]: ... | |
def detectTextRectangles(self, frame: cv2.typing.MatLike) -> typing.Sequence[cv2.typing.RotatedRect]: ... | |
def detectTextRectangles(self, frame: cv2.UMat) -> typing.Sequence[cv2.typing.RotatedRect]: ... | |
class TextDetectionModel_EAST(TextDetectionModel): | |
# Functions | |
def __init__(self, network: Net) -> None: ... | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def setConfidenceThreshold(self, confThreshold: float) -> TextDetectionModel_EAST: ... | |
def getConfidenceThreshold(self) -> float: ... | |
def setNMSThreshold(self, nmsThreshold: float) -> TextDetectionModel_EAST: ... | |
def getNMSThreshold(self) -> float: ... | |
class TextDetectionModel_DB(TextDetectionModel): | |
# Functions | |
def __init__(self, network: Net) -> None: ... | |
def __init__(self, model: str, config: str = ...) -> None: ... | |
def setBinaryThreshold(self, binaryThreshold: float) -> TextDetectionModel_DB: ... | |
def getBinaryThreshold(self) -> float: ... | |
def setPolygonThreshold(self, polygonThreshold: float) -> TextDetectionModel_DB: ... | |
def getPolygonThreshold(self) -> float: ... | |
def setUnclipRatio(self, unclipRatio: float) -> TextDetectionModel_DB: ... | |
def getUnclipRatio(self) -> float: ... | |
def setMaxCandidates(self, maxCandidates: int) -> TextDetectionModel_DB: ... | |
def getMaxCandidates(self) -> int: ... | |
# Functions | |
def NMSBoxes(bboxes: typing.Sequence[cv2.typing.Rect2d], scores: typing.Sequence[float], score_threshold: float, nms_threshold: float, eta: float = ..., top_k: int = ...) -> typing.Sequence[int]: ... | |
def NMSBoxesBatched(bboxes: typing.Sequence[cv2.typing.Rect2d], scores: typing.Sequence[float], class_ids: typing.Sequence[int], score_threshold: float, nms_threshold: float, eta: float = ..., top_k: int = ...) -> typing.Sequence[int]: ... | |
def NMSBoxesRotated(bboxes: typing.Sequence[cv2.typing.RotatedRect], scores: typing.Sequence[float], score_threshold: float, nms_threshold: float, eta: float = ..., top_k: int = ...) -> typing.Sequence[int]: ... | |
def blobFromImage(image: cv2.typing.MatLike, scalefactor: float = ..., size: cv2.typing.Size = ..., mean: cv2.typing.Scalar = ..., swapRB: bool = ..., crop: bool = ..., ddepth: int = ...) -> cv2.typing.MatLike: ... | |
def blobFromImage(image: cv2.UMat, scalefactor: float = ..., size: cv2.typing.Size = ..., mean: cv2.typing.Scalar = ..., swapRB: bool = ..., crop: bool = ..., ddepth: int = ...) -> cv2.typing.MatLike: ... | |
def blobFromImageWithParams(image: cv2.typing.MatLike, param: Image2BlobParams = ...) -> cv2.typing.MatLike: ... | |
def blobFromImageWithParams(image: cv2.UMat, param: Image2BlobParams = ...) -> cv2.typing.MatLike: ... | |
def blobFromImageWithParams(image: cv2.typing.MatLike, blob: cv2.typing.MatLike | None = ..., param: Image2BlobParams = ...) -> cv2.typing.MatLike: ... | |
def blobFromImageWithParams(image: cv2.UMat, blob: cv2.UMat | None = ..., param: Image2BlobParams = ...) -> cv2.UMat: ... | |
def blobFromImages(images: typing.Sequence[cv2.typing.MatLike], scalefactor: float = ..., size: cv2.typing.Size = ..., mean: cv2.typing.Scalar = ..., swapRB: bool = ..., crop: bool = ..., ddepth: int = ...) -> cv2.typing.MatLike: ... | |
def blobFromImages(images: typing.Sequence[cv2.UMat], scalefactor: float = ..., size: cv2.typing.Size = ..., mean: cv2.typing.Scalar = ..., swapRB: bool = ..., crop: bool = ..., ddepth: int = ...) -> cv2.typing.MatLike: ... | |
def blobFromImagesWithParams(images: typing.Sequence[cv2.typing.MatLike], param: Image2BlobParams = ...) -> cv2.typing.MatLike: ... | |
def blobFromImagesWithParams(images: typing.Sequence[cv2.UMat], param: Image2BlobParams = ...) -> cv2.typing.MatLike: ... | |
def blobFromImagesWithParams(images: typing.Sequence[cv2.typing.MatLike], blob: cv2.typing.MatLike | None = ..., param: Image2BlobParams = ...) -> cv2.typing.MatLike: ... | |
def blobFromImagesWithParams(images: typing.Sequence[cv2.UMat], blob: cv2.UMat | None = ..., param: Image2BlobParams = ...) -> cv2.UMat: ... | |
def getAvailableTargets(be: Backend) -> typing.Sequence[Target]: ... | |
def imagesFromBlob(blob_: cv2.typing.MatLike, images_: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def imagesFromBlob(blob_: cv2.typing.MatLike, images_: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[cv2.UMat]: ... | |
def readNet(model: str, config: str = ..., framework: str = ...) -> Net: ... | |
def readNet(framework: str, bufferModel: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]], bufferConfig: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ... | |
def readNetFromCaffe(prototxt: str, caffeModel: str = ...) -> Net: ... | |
def readNetFromCaffe(bufferProto: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]], bufferModel: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ... | |
def readNetFromDarknet(cfgFile: str, darknetModel: str = ...) -> Net: ... | |
def readNetFromDarknet(bufferCfg: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]], bufferModel: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ... | |
def readNetFromModelOptimizer(xml: str, bin: str) -> Net: ... | |
def readNetFromModelOptimizer(bufferModelConfig: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]], bufferWeights: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ... | |
def readNetFromONNX(onnxFile: str) -> Net: ... | |
def readNetFromONNX(buffer: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ... | |
def readNetFromTFLite(model: str) -> Net: ... | |
def readNetFromTFLite(bufferModel: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ... | |
def readNetFromTensorflow(model: str, config: str = ...) -> Net: ... | |
def readNetFromTensorflow(bufferModel: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]], bufferConfig: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ... | |
def readNetFromTorch(model: str, isBinary: bool = ..., evaluate: bool = ...) -> Net: ... | |
def readTensorFromONNX(path: str) -> cv2.typing.MatLike: ... | |
def readTorchBlob(filename: str, isBinary: bool = ...) -> cv2.typing.MatLike: ... | |
def shrinkCaffeModel(src: str, dst: str, layersTypes: typing.Sequence[str] = ...) -> None: ... | |
def softNMSBoxes(bboxes: typing.Sequence[cv2.typing.Rect], scores: typing.Sequence[float], score_threshold: float, nms_threshold: float, top_k: int = ..., sigma: float = ..., method: SoftNMSMethod = ...) -> tuple[typing.Sequence[float], typing.Sequence[int]]: ... | |
def writeTextGraph(model: str, output: str) -> None: ... | |