File size: 3,168 Bytes
8e354ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import google.generativeai as genai
from PIL import Image
import re
import cv2
import numpy as np
import gradio as gr

def parse_bounding_box(response):
    bounding_boxes = re.findall(r'\[(\d+,\s*\d+,\s*\d+,\s*\d+,\s*[\w\s]+)\]', response)

    # Convert each group into a list of integers and labels.
    parsed_boxes = []
    for box in bounding_boxes:
        parts = box.split(',')
        numbers = list(map(int, parts[:-1]))
        label = parts[-1].strip()
        parsed_boxes.append((numbers, label))

    # Return the list of bounding boxes with their labels.
    return parsed_boxes

# Draw bounding boxes with labels.
def draw_bounding_boxes(image, bounding_boxes_with_labels):
    label_colors = {}
    if image.mode != 'RGB':
        image = image.convert('RGB')

    image = np.array(image)

    for bounding_box, label in bounding_boxes_with_labels:
        # Normalize the bounding box coordinates
        width, height = image.shape[1], image.shape[0]
        ymin, xmin, ymax, xmax = bounding_box
        x1 = int(xmin / 1000 * width)
        y1 = int(ymin / 1000 * height)
        x2 = int(xmax / 1000 * width)
        y2 = int(ymax / 1000 * height)

        if label not in label_colors:
            color = np.random.randint(0, 256, (3,)).tolist()
            label_colors[label] = color
        else:
            color = label_colors[label]

        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 1
        font_thickness = 2
        box_thickness = 2
        text_size = cv2.getTextSize(label, font, font_scale, font_thickness)[0]

        text_bg_x1 = x1
        text_bg_y1 = y1 - text_size[1] - 5
        text_bg_x2 = x1 + text_size[0] + 8
        text_bg_y2 = y1

        cv2.rectangle(image, (text_bg_x1, text_bg_y1), (text_bg_x2, text_bg_y2), color, -1)
        cv2.putText(image, label, (x1 + 2, y1 - 5), font, font_scale, (255, 255, 255), font_thickness)
        cv2.rectangle(image, (x1, y1), (x2, y2), color, box_thickness)

    image = Image.fromarray(image)
    return image

def detect_objects(api_key, prompt, input_image):
    genai.configure(api_key=api_key)

    img = Image.open(input_image)

    model = genai.GenerativeModel(model_name='gemini-1.5-pro')

    response = model.generate_content([
        img,
        (
            f"Return bounding boxes for {prompt} in the image in the following format as"
            " a list. \n [ymin, xmin, ymax, xmax, object_name]. "
        ),
    ])

    result = response.text
    result = result[result.find('-'):].strip()

    bounding_box = parse_bounding_box(result)
    output = draw_bounding_boxes(img, bounding_box)
    
    return output

# Gradio app
demo = gr.Interface(
    fn=detect_objects,
    inputs=[
        gr.Textbox(label="Your Gemini API Key", type="password"),
        gr.Textbox(label="Object(s) to detect", value="famous personality"),
        gr.Image(type="filepath", label="Input Image")
    ],
    outputs=gr.Image(type="pil", label="Detected Image"),
    title="Object Detection using Gemini ✨",
    description="Detect objects in images using the Gemini.",
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch(debug=True)